SREE VIDYANIKETHAN Engineering College (Autonomout)

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(AUTONOMOUS)

Sree Sainath Nagar, Tirupati - 517102

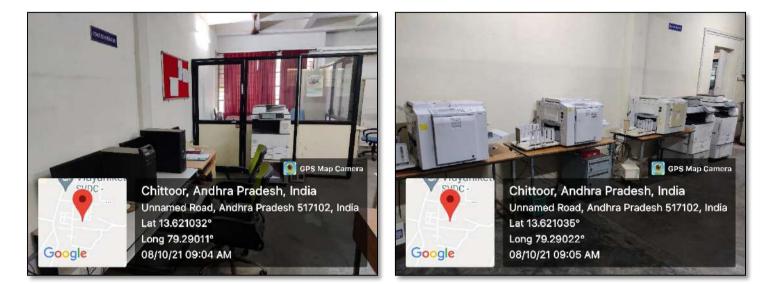
Exam Section and Dr. K. Saradhi, Controller of Examinations

Mr. P. Basha Addl. Controller of Examinations (UG)

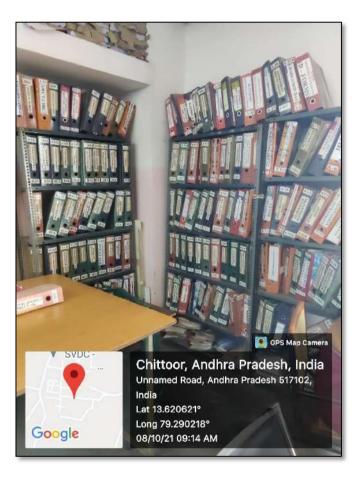
Mr. K. S. Chakradhar Addl. Controller of Examinations (PG)

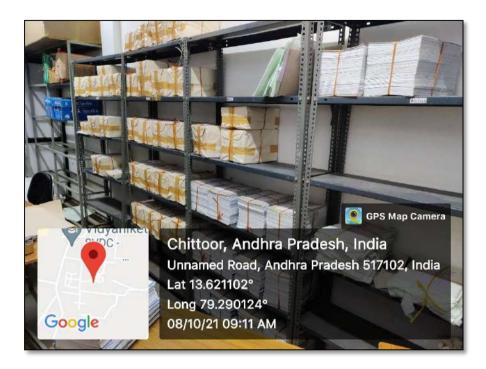
Mr. A. Venkatesh Addl. Controller of Examinations (UG)

Mr. A. V. Sree Harsha Addl. Controller of Examinations (Technical)

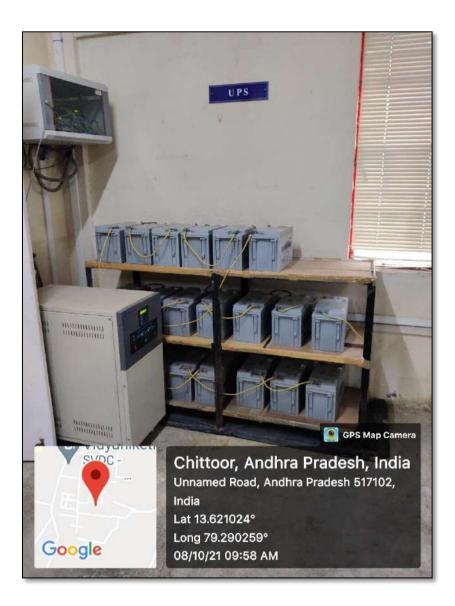

Principal and Controller of Examinations Addressing the Coordinators

Coordinators Distributing Answer Scripts to the Invigilators


Exam Section Supporting Staff


Computer Systems for Data entry and Reprographic facilities

Strong Room Facility


Examination Related Files

Stationary for Examinations

Data Hand Books Racks for Examination

UPS System

Students writing Examination in Examination Halls

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(AUTONOMOUS)

SREE SAINATH NAGAR, TIRUPATI-517 102 (Approved by AICTE; Programs Accredited by NBA; NAAC with 'A' Grade)

Academic Calendar for the Year 2019-20

For

III B. Tech – I Semester

I Spell of Instruction	24.06.2019 to 17.08.2019	R wooko	
Diagnostic Tests	From 04.07.2019 (3 working days)	- 8 weeks	
I Mid-term Examinations	19.08.2019 to 26.08.2019	1 week	
II Spell of Instructions	27.08.2019 to 26.10.2019	9 weeks	
Remedial Classes	From 03.09.2019 (12 working days)	JWeeks	
II Mid-term Examinations	28.10.2019 to 02.11.2019	1 week	
Preparation & Practical Examinations	04.11.2019 to 16.11.2019	2 weeks	
Semester-End Examinations	18.11.2019 to 30.11.2019	2 weeks	
Semester-Break	01.12.2019 to 15.12.2019	2 weeks	
Commencement of Class work for III B.Tech II- Semester	16.12.2019	-	

III B. Tech – II Semester

I Spell of Instruction	16.12.2019 to 08.02.2020		
Diagnostic Tests	From 26.12.2019 (3 working days)	- 8 weeks	
I Mid-term Examinations	10.02.2020 to 15.02.2020	1 week	
II Spell of Instruction	17.02.2020 to 18.04.2020		
Remedial Classes	From 24.02.2020 (12 working days)	9 weeks	
II Mid-term Examinations	20.04.2020 to 25.04.2020	1 week	
Preparation & Practical Examinations	27.04.2020 to 09.05.2020	2 weeks	
Semester-End Examinations	11.05.2020 to 23.05.2020	2 weeks	
Summer Vacation	24.05.2020 to 21.06.2020	4 weeks	
Commencement of Class work for IV B. Tech. I Semester	22.06.2020	-	

III B.Tech - II Semester (16BT60201) POWER SEMICONDUCTOR DRIVES

Int. Marks		Total Marks L		т	Ρ	С	
30	70	100	3	1	_	3	

PREREQUISITES: Courses on Power Electronics, Synchronous Machines and Control Systems.

COURSE DESCRIPTION:

DC drives: Rectifier fed and Chopper fed drives; AC Drives: Induction motor drives, Synchronous and Stepper motor drives.

COURSEOUTCOMES: On successful completion of the course, students will be able to CO1.

- demonstrate knowledge on
 - dynamics of electrical drives.
- operation and speed control of various DC & AC drives.
 open loop and closed loop control of DC & AC drives.
- analyze single and multi-quadrant operations of DC & AC drives with speed-torque characteristics. CO2.
- CO3. design and develop various configurations of power electronic converters for AC & DC drives.
- investigateopen and closed loop operations of various CO4. drives using different speed control techniquesto enhance the drive performance.
- CO5. applyappropriate power converters for controlling the drives in real time applications.
- CO6. apply the conceptual knowledge of power semiconduc tor drivesin relevance to industry and society.

DETAILED SYLLABUS:

UNIT-I: INTRODUCTION TO ELECTRICAL DRIVES

08 periods)

Concept of electrical drives. Dynamics of electrical drives - fundamental torque equations, speed-torque conventions and multi-quadrant operation; Load torques - components, nature and classification. Steady state stability. Electric braking methods regenerative dynamic and plugging. Modes of operation of electrical drive. Speed control and drive classifications, closed loop control of drives.

UNIT-II: SINGLE PHASE AND THREE PHASE CONVERTER FED DC DRIVES (11 periods)

Introduction to DC drives, control of DC separately excited mo-tor by single-phase and three-phase half and full converters voltage and current waveforms for continuous and discontinuous motor currents, speed-torque equations and characteristics. Dual converter control of DC separately excited motor. SVEC16 - B.TECH - ELECTRICAL & ELECTRONICS ENGINEERING 140

UNIT-III: DC CHOPPER FED DRIVES

(08 periods)

Control of DC separately excited motor by one, two and four quadrant choppers, voltage and current waveforms for con-tinuous conduction mode. Closed loop model of separately excited DC motor, closed loop speed control scheme.

UNIT-IV: INDUCTION MOTOR DRIVES (10 periods) Introduction, stator voltage control by AC voltage controllers.Stator frequency control - slip speed control, torque and power limitations, modes of operation. Variable frequency control by voltage source inverters (VSI), current source inverters (CSI). Static rotor resistance control. Slip power recovery schemes - static Scherbius drive, static Kramer drive.

UNIT-V: SYNCHRONOUS AND STEPPER MOTOR DRIVES

(08 periods) Modes of variable frequency control. Operation of self-con-trolled synchronous motors byVSI, CSI. Load commutated CSI fed synchronous motor drive - operation and waveforms. Stepper motor drives - torque Vs stepping rate characteristics, drive circuits.

Total Periods: 45

TEXT BOOKS:

- 1. Gopal K. Dubey, Fundamentals of Electric Drives, Narosa Publications, 2nd edition, 2004.
- 2. VedamSubramaniam, Electric drives (concepts and applications), Tata Mc Graw-Hill Education, 2011.

REFERENCE BOOKS:

- 1. Gopal K. Dubey, Power Semiconductor Controlled Drives, Prentice-Hall International, 1989.
- 2. Paresh C. Sen, Thyristor DC Drives, Wiley-Interscience, 1981.

SREE VIDYANIKETHAN ENGINEERING COLLEGE (AUTONOMOUS)

Sree Sainath Nagar, A. Rangampet - 517 102

Department of Electrical and Electronics Engineering

Lesson Plan/Diary 2019-20

Name of the Subject

- : Power Semiconductor Drives [16BT60201]
- Name of the faculty Member
- **Dr. E. Parimalasundar** :
- Class & Semester
- **III B.Tech. & II Semester** :

EEE 'B'

:

Section

Торіс	No. of Periods required	Date(s) covered	No. of periods used		Topics for Self Study	Teaching Aids (PPT / Video / Role Play etc.,)
UNIT – I:IN		TION TO E	LECTRI	CAL DRI	VES	
ynamics of electrical drive, undamental torque equations	1			T1		
oad torques components, nature and	1			T1		

Total of periods required:	10	Periods used:	-		
Formative Test-1					
Tutorial-2	1		T1		
Classifications of drives and its Speed controlling techniques, closed loop control of drives.	1		T1	applications.	
Modes of operation of electrical drive	1	Þ	T1	motors used in drive	
Introduction to Methods of Electric braking, Regenerative, Dynamic and Plugging	1		Т1	ratings for various electrical	
Steady state stability	1		T1	determination of power	
Tutorial-1	1		Τ1	Selection and	
Speed Torque conventions and Multi quadrant operation	1		T1		
Load torques components, nature and classification	1		T1		
Dynamics of electrical drive, Fundamental torque equations	1		T1		
Introduction (concept of electric drives)	1		T1		

UNIT - II: SINGLE PHASE AND THREE PHASE CONVERTER FED DC DRIVES

Introduction to DC Drives	1	T1		
Operation, voltage and current waveforms for continuous motor currents, Speed-torque equations and the characteristics of DC separately excited motor by single-phase semi- converter	1	T1	DC Motors – steady state	
Operation, voltage and current waveforms for discontinuous motor currents, Speed-torque equations and the characteristics of DC separately excited motor by single-phase semi- converter	1	T1	speed torque relations and speed control methods.	
Operation, voltage and current waveforms for continuous motor currents, Speed-torque equations and the characteristics of DC separately	1	Т1		

Торіс	No. of Periods required	Date(s) covered	No. of periods used	Book(s) followed	Topics for Self Study	Teaching Aids (PPT / Video / Role Play etc.,)
excited motor by single-phase full converter1						
Operation, voltage and current waveforms for discontinuous motor currents, Speed-torque equations and the characteristics of DC separately excited motor by single-phase full converter2	1			Τ1		
Tutorial-3	1			T1		
Operation, voltage and current waveforms for continuous motor currents of three-phase semi- converter fed DC separately excited motor	1			Т1		
Speed-torque equations and the characteristics of DC separately excited motor fed by three-phase semi- converter	1			Т1		
Operation, voltage and current waveforms for continuous motor currents of three-phase full converter fed DC separately excited motor.	1			T1		
Speed-torque equations and characteristics of DC separately excited motor fed by three-phase full converter	1			T1		
Tutorial-4	1		1	T1		
Operation, Speed-torque characteristics of DC separately excited motor by single-phase dual converter	1			T1		
Operation, Speed-torque characteristics of DC separately excited motor by three phase dual converter	1			T1		
Formative Test-2				T1		
Total of periods required:	13	Periods used:		-		
UNIT	-III: DO	C CHOPPER	FED DR	IVES		
Operation of a Separately Excited DC motor by I Quadrant chopper with voltage and current waveforms for continuous motor currents, speed torgue equations and characteristics	1			Т1		
Operation of a Separately Excited DC motor by II Quadrant chopper with voltage and current waveforms for continuous motor currents, speed torque equations and characteristics	1			Т1		
Tutorial-5	1			T1	Tanala	
Operation of a Separately Excited DC motor by two Quadrant (type-A) chopper with voltage and current waveforms for continuous motor current	1			Т1	Topology of DC Chopper fed drives in Battery powered	
Operation of a Separately Excited DC motor by two Quadrant (type-B) chopper	1			T1	Vehicles.	
Voltage and current waveforms for continuous motor current of two Quadrant (type-B) chopper fed Separately Excited DC motor	1			T1		
Operation of a Separately Excited DC motor by four Quadrant chopper	1			T1		
Voltage and current waveforms for continuous motor current of four	1			T1		

Торіс	No. of Periods required	Date(s) covered	No. of periods used	BOOK(SI	Topics for Self Study	Teaching Aids (PPT / Video / Role Play etc.,)
Quadrant chopper fed Separately Excited DC motor						
Tutorial-6	1			T1		1.00
Closed loop model of a Separately Excited DC motor and its closed loop speed control scheme.	1			T1		14405
Formative Test-3					28	
Total of periods required:	10	Periods used:		-		
UNIT -	IV: IN	DUCTION M	OTOR D	RIVES		
Introduction to Induction Motor Drives	1			T1		
Stator voltage control of 3-phase induction motors by AC voltage controllers	1			Τ1		
Tutorial-7	1			T1		
Stator Frequency control, Slip Speed Control, Torque and Power Limitations	1			T1		
Variable Frequency control of 3-phase induction motors by six step voltage source inverters	1			T1		
Variable Frequency control of 3-phase induction motors by PWM inverters	1			T1	Analysis and performance of	
Variable Frequency Control of 3-phase induction motors by current source inverters	1			T1	Three Phase Induction motors	
Tutorial-8	1			T1	motors	
Static rotor resistance control, Closed loop operation, numerical problems	1			T1		
Slip power recovery Schemes	1			T1		
Static Scherbius drive operation and speed-torque characteristics	1			T1		
Static Kramer drive-operation	1			T1		-
Formative Test-4						
Total of periods required:	12	Periods used:		-		
UNIT - V: SYNC	HRONO	US AND STE	EPPER M		DRIVES	
Modes of variable frequency control of synchronous motor	1			T1		
Operation of self-controlled synchronous motors by Voltage Source Inverter1	1			T1		
Operation of self-controlled synchronous motors by Voltage Source inverter2	1			T1	Topology of	
Operation of self-controlled synchronous motors by Current Source inverter1	1			T1	Topology of Solar and Battery powered	
Operation of self-controlled synchronous motors by Current Source nverter2	1			Т1	drives, Traction drives.	
futorial-9	1			T1		
				2 - 2 - 1 - 2	-	9
Operation of Load commutated CSI fed synchronous motor drive and its vaveforms	1			T1		
ynchronous motor drive and its	1			T1 T1	-	

Торіс	No. of Periods required	Date(s) covered	No. of periods used		Topics for Self Study	Teaching Aids (PPT / Video / Role Play etc.,)
Tutorial-10	1			T1		
Formative Test-5						
Total of periods required:	10	Periods used:			-	
Grand total of periods required:	55	Grand total of periods used:				

TEXT BOOKS:

T1. Gopal K. Dubey, Fundamentals of Electric Drives, Narosa Publications, 2ndedition, 2004.

T2. Vedam Subramaniam "Electric drives (concepts and applications)", Tata McGraw-Hill Education, 2011

· REFERENCE BOOKS:

R1. Gopal K. Dubey, Power Semiconductor controlled drives, Prentice-Hall International, 1989.

R2. Paresh C. Sen, Thyristor DC Drives, Wiley-Interscience, 1981.

R3. M.D. Singh, K.B. Khanchandani, Power Electronics, Tata McGraw Hill, 2nd edition, 2013

Faculty Member

H-5-8

Head of the Department

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Anantapur)

III B.Tech. II Semester (SVEC 16) Regular Examinations April, 2019 POWER SEMICONDUCTOR DRIVES

(Electrical and Electronics Engineering)

Ti	me:	3 Hours Max	x. Marks:	70
		Answer ONE question from each unit All questions carry equal marks		
		UNIT – I		
1.	a)	Derive the fundamental torque equations governing DC Motor load dynamics.	C01	10M
	b)	Compare DC and AC Drives.	CO2	4M
1.201		OR		
2.	a)	Derive the mathematical conditions for steady state stability analysis of equilibrium operating point.	CO2	10M
	b)	Mention the necessary condition to obtain the three modes of operation of an electric drive.	C01	4M
2		UNIT – II		
3.		Analyse the operation of 3φ fully controlled converter fed dc drive with neat waveforms for $\alpha = 30^{\circ}$ and $\alpha = 120^{\circ}$ and give the justification about the waveforms.	CO2, CO4	14M
		OR		
4.	a)	Explain using a power circuit the working of a single phase semi converter fed separately excited motor drive.	C01	10M
	b)	What are the advantages of three phase drives over the single phase drives?	C01	4M
		UNIT – III		
5.	a)	Discuss the four quadrant operation of chopper control in a dc motor drive.	CO2	8M
	b)	With a neat diagram, illustrate the closed loop model of separately excited dc motor drive.	C01	6M
		OR		
6.	a) b)	Explain the motoring mode operation of chopper fed dc motor. Compare regenerative braking and dynamic braking of separately excited dc motor by chopper control and identify the suitable braking	CO1 CO5	6M 8M
		method for DC motor. UNIT – IV		
7.	a)	With an aid of a neat diagram, explain the operation of static Scherbius	004	
		system for slip power recovery scheme	CO1	10M
	b)	Compare Current Source Inverter drive with Voltage Source Inverter drive in steady state conditions.	CO4	4M
		OR		
8.	a)	Discuss the steady state analysis of constant slip-speed controlled induction motor.	CO2	7M
	b)	Explain the speed control scheme employed in industries for induction motor drive with stator voltage control and mention the reason for choosing induction motor drive rather than other motor drives. UNIT – V	C06	7M
9.	a)	Analyse the operation of self-controlled synchronous motor with Voltage Source Inverter	C02	10M

CO1 4M b) When can a synchronous motor be load commutated?

- 10. a) Explain self-control of synchronous motor drive operated with constant CO1 10M margin angle control.
 - b) Mention the different modes employed to achieve variable frequency CO1 4M control in synchronous motors?

M-5.5

Signature of the HOD

Signature of the Faculty

BOS Chairman Signatur

Code No.: 16BT60201

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Anantapur) III B.Tech. II Semester (SVEC 16) Regular Examinations April, 2019 POWER SEMICONDUCTOR DRIVES

(Electrical and Electronics Engineering)

		(Electrical and Electronics Engineering)					
	Time: 3 Hours M						
		Answer ONE question from each unit All questions carry equal marks					
		UNIT – I					
1.	a)	Explain in detail with an example, Multi-Quadrant operation of a motor driving a hoist load with speed-torque plane.	C01	10M			
	b)	Explain various types of drive based on classification of duties. OR	C01	4M			
2.	a)	Analyse the different modes of operation of electric drives.	CO2	9M			
	b)	Draw and explain the block diagram of an electric drive.	CO1	5M			
	2	UNIT – II					
3.	a)	phase fully controlled converter fed DC motor with necessary waveforms.	C01	10M			
	b)	List out the drawbacks of rectifier fed DC drives. OR	C01	4M			
4.	a)	A separately excited DC motor operating from a single phase half controlled bridge at a speed of 1400rpm has an input voltage of 330sin314t and a back EMF of 80V. The SCRs are fixed symmetrically and are fired at $a=30^{\circ}$ in every half cycle. The armature has a resistance of 4 Ω . Calculate the average armature current and the motor torque.	C02	10M			
	b)	What are the advantages of closed loop control of DC drives?	CO1	4M			
5.	a)	A DC shunt motor can be made to under motoring and braking modes using a chopper. Justify.	CO4	7M			
	b)	Discuss how the stability of the system is achieved in industries by employing the closed loop speed controlling schemes for chopper fed DC drives.	CO6	7M			
		OR					
6.	a)	Explain the operation of two quadrant type A chopper fed DC drives	CO1	7M			
	b)	Draw the circuit diagram and analyse the operation of chopper fed separately excited dc motor and derive the expression for speed. UNIT – IV	CO2	7M			
7.	a)	varying the frequency of the applied voltage.	CO2	7M			
	b)	Explain the reason behind operating an induction motor with constant voltage and variable frequency. Draw the appropriate speed-torque characteristics.	CO4	7M			
		OR					
8.	a)	Design a power circuit and explain the working of a static Kramer drive system.	CO3	10M			
	b)	What is meant by slip power recovery system?	CO1	4M			
9.	a)	Design the driver circuit for stepper motor drives.	CO3	7M			

b) Draw the torque - stepping rate characteristics of a stepper motor. Analyse CO4 7M its performance for different values of stepping rates.

OR

- 10. a) A load commutated current source inverter can be used to drive a CO5 10M synchronous motor. Justify the operation with a neat diagram and wave forms.
 - b) Explain self-controlled mode of operation of synchronous motor.

Signature of the Faculty

BOS Chairman Signat

CO1

4M

Signature of the HOD

Faculty

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Anantapur) III B.Tech. II Semester (SVEC 16) Regular Examinations April, 2019 POWER SEMICONDUCTOR DRIVES (Electrical and Electronics Engineering)

	Time: 3 Hours Max						
		Answer ONE question from each unit All questions carry equal marks					
1.		UNIT – I Derive the expressions to find the equivalent load torque and equivalent	CO1	10M			
1.	a)	inertia of loads in translational and rotational motion.					
	b)	Compare group drive with individual drive.	CO2	4M			
2.	a)	OR Investigate the principle of regenerative braking used in four quadrant industrial drives	CO4	7M			
	b)	Explain how the concept of steady state stability condition is achieved in Industrial drives.	CO6	7M			
		UNIT – II					
3.	a)	Explain the discontinuous and continuous modes of operation of single phase fully controlled converter fed DC motor with necessary waveforms.	CO1	10M			
	b)	What do you understand by constant torque drive and constant power drive?	CO1	4M			
		OR	~~~				
4.		Explain the operation of a single phase half-controlled converter fed separately excited motor drive and obtain the expression of speed and torque of the motor for continuous mode of operation. UNIT – III	C01	14M			
5.	a)		CO2	10M			
	b)	What are the various control strategies used for varying duty cycle of the chopper.	CO1	4M			
~		OR					
6.		Explain the operation of Type-E chopper fed separately excited DC motor with necessary waveforms.	C01	14M			
7		UNIT – IV Mention the various speed control techniques of three phase induction	CO1				
7.	a)	motor and explain any two methods of speed control in detail.	C01	10M			
	b)	What do you understand by V/F control? OR	C01	4M			
8.	a)	Examine the adjustable frequency constant air gap flux control method of speed control of induction motor drives.	CO4	10M			
	b)	State the advantages of variable frequency control of induction motor. UNIT – V	CO1	4M			
9.	a)	Explain the closed loop control of synchronous motor with neat block diagram and relate the performance with open loop control. OR	C05	14M			
10.	a)	Design a load commutated inverter circuit and explain the closed loop operation of synchronous motor.	CO3	10M			
	b)	What is meant by margin angle of commutation in the control of synchronous motors?	CO1	4M			
	for for Frond H.S. Sy thy						
	Sigr	nature of the Signature of BOS Chairman Signature of t Faculty	he HOD				

(An Autonomous Institution, Affiliated to JNTUA, Anantapur) III B.Tech. II Semester (SVEC 16) Regular Examinations April, 2019 POWER SEMICONDUCTOR DRIVES (Electrical and Electronics Engineering)

	Tim	e: 3 Hours	Max. Mark	s: 70
		Answer ONE question from each unit		5. 70
		All questions carry equal marks		
		UNIT – I		
1.	a)	Analyse the quadrantal diagram of speed-torque characteristics for a motor driving hoist load.	CO2	10M
	b)	What is deceleration mode of operation? OR	C01	4M
2.	a) b)	Discuss the various methods of electric braking in industrial drives. What is acceleration mode of operation?	CO6 CO1	10M 4M
			COI	414
3.	a)		C01	10M
	b)		CO2	4M
		OR		
4.	a)	Analyse the operation of DC motor driven by three phase dual converter.	CO2	10M
	b)	List out the different modes of operation of dual converter fed DC motor drives.	CO1	4M
		UNIT – III		
5.	a)	Analyse the operation of Type-B chopper fed separately excited DC motor with neat voltage and current waveforms and derive the speed-torque equations	CO2, CO4	10M
		torque equations.	04	
6.	a)	Suggest a SCR based power circuit fed from a DC supply to control the	CO5	10M
	b)	speed of a separately excited DC motor and explain its working. Why thyristors are not preferred nowadays for chopper fed DC drives?	CO1,	4M
		UNIT – IV	CO4,CO5	411
7.	a)			
<i>.</i>		Analyse the V/F control of induction motor drives with neat diagrams and waveforms.	CO2	9M
	b)	Write down the consequences faced by electrical industries because of increasing the frequency of induction motor without a change in the terminal voltage.	CO5	5M
-		OR		
8.	a)	with a slip of 4%. Find the value of the resistance necessary to be put series per phase of the rotor to reduce the speed by 15%. Assume that the resistance of the rotor per phase is 0.50	CO5	10M
	b)	Draw and explain the speed-torque characteristics of the induction motor.	CO1	4M
		UNIT – V		
9.		Examine the operation of self-controlled synchronous motor with Current Source Inverter.	CO4	10M
	b)	Compare constant margin angle and power factor control of synchronous motor. Justify which is suitable for synchronous motor.	C05	4M

- a) A 500kW, 3-phase, 3.3kV, 0.8(lagging) power factor, 4-pole, star connected synchronous motor has the following parameters. X_s=15Ω, R_s=0. Rated field current is 10A. Calculate armature current and power factor at half the rated torque and field current.
 - b) Draw and analyse the speed-torque characteristics of synchronous CO2 4M motor with a fixed frequency supply.

Signature of the Faculty

Signature Chairman

CO4

Signature of the HOD

(An Autonomous Institution, Affiliated to JNTUA, Anantapur) III B.Tech. II Semester (SVEC 16) Regular Examinations April, 2019 POWER SEMICONDUCTOR DRIVES (Electrical and Electronics Engineering)

Time: 3 Hours Answer ONE question from each unit All questions carry equal marks UNIT - I 1. a) Explain the classifications and nature of load torques with speed-torque aracteristics. CO1 10M b) Analyse the steady state operation of electric drives. CO2 4M 0 OR CO3 10M 2. a) Develop criteria for evaluating the steady state stability of an electrical drive. CO3 10M b) Justify the need of dynamic braking used in industries. CO6 4M 0 UNIT - II CO6 CO1 14M 3. Explain using a power circuit the working of a three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. CO4 7M b) A 200V, 875rpm, 15OA Separately excited drom tor has an armature resistance of 0.060. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 5OHz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. CO2 14M 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dr motor with aid of diagram, waveforms and speed- torque curves. CO5 10M 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, Ton=10ms, Ton=15ms. Neglecting armature inductance and assuming continuous			(Electrical and Electromes ==g	. Marks	: 70
All questions carry equal marks UNIT - I 1. a) Explain the classifications and nature of load torques with speed-torque CO1 10M characteristics. CO2 4M b) Analyse the steady state operation of electric drives. CO3 10M b) Justify the need of dynamic braking used in industries. CO6 4M c) Develop criteria for evaluating the steady state stability of an electrical drive. CO3 10M b) Justify the need of dynamic braking used in industries. CO6 4M UNIT - II 3. Explain using a power circuit the working of a three phase semi converter fed separately excited motor drive. AR 0R CO4 7M Separately excited motor drive and relate with the speed-torque equation. b A 200V, 875rpm, 150A separately excited dc motor has an armature resistance of 0.06Q. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. CO2 14M Separately excited dc motor of a DC separately excited motor has supply voltage of 230V, Tow=10ms, Tore=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_=0.5V/rad/sec. The armature resistance is 22. <		Tim	e: 3 Hours		
UNIT - I 1. a) Explain the classifications and nature of load torques with speed-torque contracteristics. CO1 10M b) Analyse the steady state operation of electric drives. CO2 4M characteristics. OR CO3 10M c) a) Develop criteria for evaluating the steady state stability of an electrical drive. CO3 10M b) Justify the need of dynamic braking used in industries. CO6 4M c) Core and the speed-torque characteristics of three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. CO4 7M a) Draw the speed-torque characteristics of three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. CO5 7M b) A 200V, 875rpn, 15OA separately excited dc motor has an armature resistance of 0.06Q. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. CO2 14M 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. CO5 10M 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, Tow=10ms, Tow=150m, has a voltage constant K,=0.5V/rad/sec. The armature resistance is 20. CO3 10M <t< th=""><th></th><th></th><th>All questions carry equal marks</th><th></th><th></th></t<>			All questions carry equal marks		
1. a) Explain the classifications and nature of load torques with speed-torque C01 10M 1. a) Explain the classifications and nature of load torques with speed-torque corrected state stability of an electrical drive. C02 4M 2. a) Develop criteria for evaluating the steady state stability of an electrical drive. C03 10M 2. a) Develop criteria for evaluating the steady state stability of an electrical drive. C03 10M 3. Develop criteria for evaluating the working of a three phase semi converter fed separately excited motor drive. C01 14M 3. Explain using a power circuit the working of a three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. C04 7M 4. a) Draw the speed-torque characteristics of three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. C05 7M b) A 200V, 875rpm, 150A separately excited dc motor has an armature resistance of 0.060. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, Soltz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. C02 14M 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque courses. C05 10M 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, Tow=10ms, Torr=15ms. Neglect			The questions curry - 1		
 a) Explain the classifications and nature of ideal torques man speed torques of the classifications and nature of ideal torques man speed torque of the classifications and nature of ideal torques man speed torque of the classifications and nature of ideal torques man speed torque of the classifications and nature of ideal torques man speed torque of the classifications and nature of the classifications and nature of ideal torques man speed torque of the classifications and nature of the classifications and nature of the classifications of the classifications of the classifications of the classifications and nature of the classifications of the					1.014
b) Analyse the steady state operation of electric drives. CO2 4M OR OR 10M 2. a) Develop criteria for evaluating the steady state stability of an electrical drive. CO3 10M b) Justify the need of dynamic braking used in industries. CO4 4M UNIT - II 3. Explain using a power circuit the working of a three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. CO4 7M 4. a) Draw the speed-torque characteristics of three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. CO5 7M b) A 200V, 875rpm, 150A separately excited dc motor has an armature resistance of 0.06Ω. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. CO5 7M UNIT - III Some analyse the operation of chopper for forward motoring and braking control of speately excited dc motor with aid of diagram, waveforms and speed-torque curves. CO5 10M Some analyse the operation of a DC separately excited motor has supply voltage of 230V, ToN=10ms, Torr=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500Tpm, has a voltage constant K_=0.5V/rad/sec. The armature resistance is 220.	1.	a)	Explain the classifications and nature of load torques with speed-torque	C01	TOM
OR CO3 10M 2. a) Develop criteria for evaluating the steady state stability of an electrical drive. CO3 4M b) Justify the need of dynamic braking used in industries. CO6 4M UNIT - II 3. Explain using a power circuit the working of a three phase semi converter fed separately excited motor drive. CO1 14M 0R 4. a) Draw the speed-torque characteristics of three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. CO5 7M b) A 200V, 875rpm, 150A separately excited dc motor has an armature resistance of 0.0602. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. CO2 14M Separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, ToN=10ms, Torr=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K,=0.5V/rad/sec. The armature resistance is 2.0. CO3 10M Design a circuit and explain the concept of closed loop control of 3-phase VS1 fed induction motor.		h)		CO2	4M
 a) Develop criteria for evaluating the steady state stability of an electrical drive. CO3 10M b) Justify the need of dynamic braking used in industries. UNIT - II Explain using a power circuit the working of a three phase semi converter fed separately excited motor drive. OR a) Draw the speed-torque characteristics of three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. b) A 200V, 875rpm, 150A separately excited dc motor has an armature resistance of 0.06Q. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. CO2 14M A nalyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, Tom=10ms, Torg=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_=0.5V/rd/yec. The armature resistance is 20. b) Design and draw the block diagram of closed loop current limit control of a DC drive. UNIT - IV a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.022 and stator and motor rester and transformer brase to 0.024 and transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were negleted. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i)		U)			
 b) Justify the need of dynamic braking used in industries. UNIT - II UNIT - II Explain using a power circuit the working of a three phase semi converter fed separately excited motor drive. OR a) Draw the speed-torque characteristics of three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. b) A 200V, 875rpn, 150A separately excited dc motor has an armature resistance of 0.06Ω. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. UNIT - III Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 220V, T_{ON}=10ms, T_{OFF}=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K₁=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop control of 3-phase VSI fed induction motor. OR a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.0.20 and stator and notor rectifier work speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified v	2.	a)			
 3. Explain using a power circuit the working of a three phase semi converter fed separately excited motor drive. OR 4. a) Draw the speed-torque characteristics of three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. b) A 200V, 875rpm, 150A separately excited dc motor has an armature resistance of 0.063. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor drive and 750rpm. UNIT - III 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, Tox=10ms, Tox=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_x=0.5V/rad/sec. The armature resistance is 2.0. b) Design and draw the block diagram of closed loop current limit control of a DC drive. UNIT - IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is 2.75Nm at 900rpm. For a motor operating at 750rpm, calculate (1) Rotor rectifier view registrance of the linverter, (iv) efficiency if the inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.202 and stator and rotor resistance or settor and rotor is a motor operating at 750rpm, calculate (1) Rotor rectified voltage, (1) Inductor cu		b)		CO6	4M
 a) Draw the speed-torque characteristics of three phase terms that the speed-torque equation. b) A 200V, 875rpm, 150A separately excited dc motor has an armature resistance of 0.062. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. UNIT - III 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, Tow=10ms, Torr=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_*=0.5V/rad/sec. The armature resistance is 2Ω. b) Design an draw the block diagram of closed loop control of 3-phase VSI fed induction motor. c) State the advantages of slip power recovery system. C01 4M 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02 and stator and rotor receistance 				~~ .	
 4. a) Draw the speed-torque characteristics of three phase semi converter fed separately excited motor drive and relate with the speed-torque equation. b) A 200V, 875rpm, 150A separately excited dc motor has an armature resistance of 0.060. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. UNIT - III 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, Ton=10ms, Tor=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_x=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a DC drive. UNIT - IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase VSI fed induction motor. b) State the advantages of slip power recovery system. OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring inductor, inverter and transformer were neglected. The load torque proportional to speed is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (I) Rotor rectified voltage, (II) Inductor current, (III) delay angle of the inverter, (IV) efficiency if the inductor resistance is 0.02 and stator and motor resistance or setator is concept of the inverter, (IV) efficiency if the inductor resistance is 0.02 and stator and motor resistance or setator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a	3.		fed separately excited motor drive.	C01	14M
 b) Separately excited motor drive and relate with the speed-torque equation. b) A 200V, 875rpm, 150A separately excited dc motor has an armature resistance of 0.06Ω. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. UNIT - III 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, T_{ON}=10ms, T_{OFF}=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K₉=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a CO3 4M DC drive. UNIT - IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02 and stator and motor resistance or precision is to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter,		- 1		CO4	7M
 resistance of 0.06Ω. It is fed from a single phase fully controlled rectifier with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. UNIT - III 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, T_{ON}=10ms, T_{OFF}=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_v=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop control of 3-phase CO3 10M VSI fed induction motor. b) State the advantages of slip power recovery system. OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is control by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor tortor to resistance is 0.02Ω and stator and transformer preset targe are stator and the propertional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor tortor torter science and the propertional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm,	4.	a)			
 with an AC source voltage of 220V, 50Hz. Assuming continuous conduction, calculate firing angle for rated motor torque and 750rpm. UNIT - III 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, T_{ON}=10ms, T_{OFF}=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_x=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a DC drive. UNIT - IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase VSI fed induction motor. D State the advantages of slip power recovery system. OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Q and stator and rotor toresistance or source is a speed to be a stator is 0.02Q and stator and rotor toresistance or source is a speed to be a stator by concernent, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Q and stator and rotor toresistance or source is a speed to be a stator and the approximation to the speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (ii		b)	- 제가하는 정말했는지 않고 있는 에너 방법에 있는 것에 안전했다. 그 가지 않는 것은 것을 알았는 것이 것이 하는 것이 가지 않는 것이 하는 것이 가지 않는 것이 것을 하는 것이 것을 알았는 것이 것을 알았다. 것이 것을 알았는 것이 않았다. 이 것이 것을 알았는 것이 것을 알았는 것이 것이 같이 없다. 이 것이 것을 알았는 것이 것을 알았는 것이 것을 알았는 것이 것을 알았는 것이 것을 알았다. 것이 것을 알았는 것이 것을 알았는 것이 것을 알았는 것이 없다. 이 것이 것을 알았는 것이 없다. 이 것이 것을 알았는 것이 없다. 것이 것을 알았는 것이 것을 알았는 것이 것을 알았는 것이 것을 것을 것을 알았다. 이 것이 것을 알았는 것이 것을 알았는 것이 것을 것을 것을 것을 것을 것이 것이 것을 것을 것을 것을 것을 것을 것을 것을 것이 것이 것을	CO5	7M
 calculate firing angle for rated motor torque and 750rpm. UNIT - III 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, T_{oN}=10ms, T_{OFF}=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_v=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a CO3 4M DC drive. UNIT - IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase VSI fed induction motor. b) State the advantages of slip power recovery system. OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.020 and stator and rotor resistance is 0.020 and stator and rotor resistance 					
 5. Analyse the operation of chopper for forward motoring and braking control of separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, T_{ON}=10ms, T_{OFF}=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_v=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a CO3 4M DC drive. UNIT – IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase VSI fed induction motor. b) State the advantages of slip power recovery system. OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.020 and stator and rotor resistance 					
 separately excited dc motor with aid of diagram, waveforms and speed-torque curves. OR 6. a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, T_{ON}=10ms, T_{OFF}=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_v=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a DC drive. UNIT – IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor rector resistance 			UNIT – III		
 OR a) A chopper used for ON and OFF control of a DC separately excited motor has supply voltage of 230V, T_{ON}=10ms, T_{OFF}=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_v=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a DC drive. UNIT - IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase CO3 10M VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 	5.		separately excited dc motor with aid of diagram, waveforms and speed-	CO2	14M
 supply voltage of 230V, T_{ON}=10ms, T_{OFF}=15ms. Neglecting armature inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_v=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a CO3 4M DC drive. UNIT – IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase CO3 10M VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 					
 inductance and assuming continuous conduction of motor current, calculate the average load current when the motor speed is 1500rpm, has a voltage constant K_v=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a CO3 4M DC drive. UNIT - IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase CO3 10M VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M R8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 	6.	a)		CO5	10M
 the average load current when the motor speed is 1500rpm, has a voltage constant K_v=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a CO3 4M DC drive. UNIT – IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase CO3 10M VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 			supply voltage of 230V, $T_{ON}=10$ ms, $T_{OFF}=15$ ms. Neglecting armature		
 constant K_v=0.5V/rad/sec. The armature resistance is 2Ω. b) Design and draw the block diagram of closed loop current limit control of a CO3 4M DC drive. UNIT – IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase CO3 10M VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 			the average load current when the motor speed is 1500rpm, has a voltage		
 DC drive. UNIT - IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase CO3 10M VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 			constant $K_v = 0.5V/rad/sec$. The armature resistance is 2Ω .		
 UNIT - IV 7. a) Design a circuit and explain the concept of closed loop control of 3-phase CO3 10M VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 		b)	Design and draw the block diagram of closed loop current limit control of a	CO3	4M
 7. a) Design a circuit and explain the concept of closed loop control of 3-phase CO3 10M VSI fed induction motor. b) State the advantages of slip power recovery system. CO1 4M 0R 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 					
 VSI fed induction motor. b) State the advantages of slip power recovery system. OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 	7.	a)		CO3	10M
 OR 8. a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 			VSI fed induction motor.	005	TOM
 a) A 420V, 50Hz, 6-pole star connected slip ring induction motor speed is controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance 		D)		CO1	4M
controlled by a static Kramer drive. The effective phase turns ratio from rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance	8	a)			
rotor to stator is 0.7 and the transformer phase turns ratio from low voltage to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance	0.	α)	controlled by a static Kramer drive. The effective phase turns ratio from	CO2	10M
to high voltage is 0.5. Losses in diode rectifier, inductor, inverter and transformer were neglected. The load torque proportional to speed squared is 275Nm at 900rpm. For a motor operating at 750rpm, calculate (i) Rotor rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance			rotor to stator is 0.7 and the transformer phase turns ratio from low voltage		
rectified voltage, (ii) Inductor current, (iii) delay angle of the inverter, (iv) efficiency if the inductor resistance is 0.02Ω and stator and rotor resistance			to nigh voltage is 0.5. Losses in diode rectifier inductor invorter and		
efficiency if the inductor resistance is 0.02Ω and stator and rotor resistances			is 275Nm at 900rpm, for a motor operating at 750rpm calculate (i) pater		
enciency if the inductor resistance is 0.02Ω and stator and rotor resistances			rectified voltage, (II) Inductor current, (iii) delay angle of the invorter (iii)		
are 0.010 and 0.030 respectively			efficiency if the inductor resistance is 0.02Ω and stator and rotor resistances are 0.01Ω and 0.03Ω respectively.		
b) Frequency control is normally used for controlling speed of induction motor cod		b)	Frequency control is normally used for controlling speed of induction		

 b) Frequency control is normally used for controlling speed of induction motor CO4 4M drives. Justify.

UNIT - V

 Explain the power factor control of synchronous motor with relevant block CO4 14M diagram and compare the performance with constant margin angle control.

OR

- 10. a) A 7MW, 3-phase 12kV star connected 6-pole, 50Hz, 0.9 leading power factor CO2 synchronous motor has $X_s=10\Omega$, $R_s=0$. The rated field current is 40A. The machine is controlled by variable frequency control at constant V/F ratio upto the base speed and at constant V above base speed. Determine (i) Torque, (ii) the field current for the rated armature current 750rpm and 0.8 leading power factor.
 - b) Design the driver circuit for stepper motor drives.

Signature o Chairman

81

CO3

7M

7M

Signature of the HOD

Signature of the Faculty

3.

4.

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(AUTONOMOUS)

SREE SAINATH NAGAR, A. RANGAMPET -517 102. III B.Tech. II Semester (SVEC-16) Mid-I Examinations February, 2020

POWER SEMICONDUCTOR DRIVES(16BT60201)

(EEE) Max. Marks: 30 Time: 2 Hours Date: 11.02.2020 (AN) PART-A Answer All Questions. All Questions Carry Equal Marks 6 x 1 = 6 Marks a) How does power modulator helps in controlling of motor? 1. CO1 b) Suggest a suitable motor, with relevant characteristics, to drive a load with CO2 load torque proportional to square of speed. What are the constraints to be considered for differentiating variable and CO2 c) multi-motor speed drives? Justify your answer with an example. d) On what factors does the speed of a separately excited DC motor depend? CO1 Give the expression for speed (rad/sec). e) Comment on the continuous and discontinuous operation of controlled CO2 rectifier employing DC motor. For high rated DC motor, which type of controlled rectifier is preferable for CO2 f) motoring and braking operation? Justify your suggestion with speed-torque characteristics. PART-B Answer Any Three Questions. All Questions Carry Equal Marks 3 x 8 = 24 Marks 2. a) An industrial application demands multi-quadrant operation. Suggest a 6M CO5 suitable arrangement of hoist load meeting the requirements. Justify your suggestion with relevant proof. b) Establish a relation between motor and dynamic torque of motor-load 2M CO1 system. With relevant circuit diagram, explain the braking and plugging 8M CO1 arrangement for controlling the speed of DC shunt motor. Analyze the motor terminal voltage and current waveforms of three 8M CO2 phase full converter fed separately excited DC motor under continuous conduction with speed-torque characteristics. Derive the equation of motor terminal voltage, which is connected to three phase full converter. Also Justify your suggestion for motoring and braking operation with relevant proof. A 200 V, 875 rpm, 150 A separately excited DC motor has an armature 5. a) 6M CO3 resistance of 0.06 Ω . It is fed from a single phase fully controlled rectifier with an AC source voltage of 220 V, 50 Hz.

Assuming continuous conduction, Design a single phase full converter

- for following condition which meets controlling of motor. (i) Firing angle for motor rated torque and 750 rpm.
 - (ii) Firing angle for motor rated torque and (-500) rpm.
 - (iii) Motor speed for a=160° and rated torque.
- b) On what factors dual converter does operate in circulating current mode 2M CO1 for controlling DC motor? Justify your suggestions with circuit diagram and mathematical expressions.

---@@@@--

T.N.P

SREE VIDYANIKETHAN ENGINEERING COLLEGE

SREE VIDYANIKETHAN

(AUTONOMOUS)

SREE SAINATH NAGAR, A. RANGAMPET -517 102. III B.Tech II Semester (SVEC-16) Mid-II Examinations, November, 2020 POWER SEMICONDUCTOR DRIVES (16BT60201)

May	Mar	(EEE) ks: 30 Time: 2 Hours Date: 17.11		
Max	. Mar	ks: 30 Time: 2 Hours Date: 17.11.	2020 (AN)	
		PART-A		
nsw	er Al	Questions. All Questions Carry Equal Marks	6 x 1 = 06	Mark
1.	-)	Question		со
1.	a)	Why transistor is highly preferred in the chopper control circuits?		CO2
	b)	Why open loop control operation is not preferred for synchrono application?	ous motor	C01
	c)	"Regenerative braking is suitable for above rated speed". Ju statement.	ustify the	C01
	d)	List out any two features of variable frequency control of induction	motor.	C01
	e)	Sketch the speed Vs torque characteristics of stator voltage of	control of	C01
		induction motor.		
	f)	Why synchronous motor doesn't have starting torque?		C01
		PART-B		
nsw	er An	y Three Questions. All Questions Carry Equal Marks	3 x 8 = 24	Mark
		Question	Marks	со
2.	a)	With a neat block diagram, analyze closed loop speed contro	4 M	CO2
		scheme of separately excited DC motor.		
	b)	A 220 V, 24 A, 1000 rpm, separately excited DC motor having an		CO4
		armature resistance of 2Ω is controlled by a chopper. The chopping	5	
		frequency is 500 Hz and the input voltage is 230 V. Calculate the	2	
		duty ratio for motor torque of 1.2 times rated torque at 500 rpm.		
3.		Analyze VSI controlled IM drives with different converter circuits.	. 8M	CO2
		Also, explain why PWM inverter is preferable for VSI drives	5	
		application.		
4.		Explain and derive the expression of slip speed and mechanical	I 8M	CO1
		power of induction motor drives.		
5.		"A reciprocating pump in an industry requires closed-loop control	8M	CO6
		operation". Suggest a suitable control scheme for a synchronous		
		motor fed by a load commutated Inverter. Justify your suggestion		
		with relevant proof.		
		@@@@		
		SSR J.N.P.SI		

Sree Vidyanikethan Engineering College (AUTONOMOUS) Sree Sainath Nagar, A. Rangampet -517 102. III B.Tech. II Semester (SVEC-16) Mid-I Examinations February, 2020 POWER SEMICONDUCTOR DRIVES (16BT60201) (EEE)

Max. Marks: 30

Time: 2 Hours Date: 11.02.2020 (AN)

Scheme of Evaluation

PART-A

Answer All Questions. All Questions Carry Equal Marks

6 x 1 = 6 Marks

1.	a)	Function of power modulator in controlling of motor.	1M					
	b) Identifying a motor based on load terror of motor.							
	_	Identifying a motor based on load torque proportional to square of speed.	1M					
	c)	Constraints to be considered for variable and multi-motor speed drives.	1M					
	d) A factor decides the speed of separately DC motor – Two points							
	-	Comparing the speed of separately DC motor – Two points	1M					
	e)	Comparison of continuous and discontinuous operation of controlled rectifier.	1M					
	f)	Identifying controlled rectifier for high rated DC motor, speed-torque characteristics.	1M					

PART-B

Answer Any Three Questions. All Questions Carry Equal Marks. $3 \times 8 = 24$ Marks

2.	a)	Mutli-quadrant operation with hoist load - Circuit diagram	4M
	-	Explanation of Mutli-quadrant operation with hoist load	2M
_	b)	Expression of motor and dynamic torque of motor-load system	2M
3.		DC shunt motor – Braking Circuit diagram	2M
		DC shunt motor – Explanation	2M
		DC shunt motor – Plugging Circuit diagram	2M
		DC shunt motor – Explanation	2M
4.		Three phase full controlled rectifier - Circuit diagram	2M
		Three phase full controlled rectifier - Waveforms	3M
		Continuous conduction with speed-torque characteristics	2M
		Three phase full controlled rectifier - Explanation	1M
5.	a)	Single phase fully controlled rectifier expressions $V_{a} = \frac{2V_{m}}{\pi} \cos \alpha$ $V_{a} = E_{b} + I_{a}R_{a}$ $\frac{E_{2}}{E_{1}} = \frac{N_{1}}{N_{2}}$	ЗМ

(i) Firing angle = 29.3°	1M
(ii) Firing angle = 120°	1M
	1M
Circulating current mode – Dual converter circuit diagram	1M
Expression	1M
	(i) Firing angle = 29.3° (ii) Firing angle = 120° (iii)Speed = -893.2 rpm Circulating current mode – Dual converter circuit diagram Expression

----@@@@----

H-S.Sy lbr HOD

F

Course Coordinator

Sree Vidyanikethan Engineering College (AUTONOMOUS) Sree Sainath Nagar, A. Rangampet –517 102. III B.Tech. II Semester (SVEC-16) Mid-II Examinations November, 2020 POWER SEMICONDUCTOR DRIVES (16BT60201) (EEE)

Max. Marks: 30

1

Time: 2 Hours Date: 17.11.2020 (AN)

Scheme of Evaluation

PART-A

Answer All Questions. All Questions Carry Equal Marks

6 x 1 = 6 Marks

1.	a)	Statement of transistor is preferred for chopper control.	1M
	b)	Statement of open loop control system is not preferred for synchronous motor.	1M
	c)	Justification for regenerative braking is suitable for above rated speed control.	1M
	d)	Statement of two features of variable frequency control of induction motor.	1M
	e)	Characteristics of speed Vs torque – Stator voltage control of induction motor.	1M
	f)	Justification of synchronous motor doesn't have starting torque.	1M

PART-B

Answer Any Three Questions. All Questions Carry Equal Marks. 3 x 8 = 24 Marks

2.	a)	Separately excited DC motor - Closed loop control circuit diagram	3M
		Explanation of closed loop control operation	1M
	b)	$\frac{E_{b1}}{E_{b2}} = \frac{N_2}{N_1}$	2M
		$T_m = 1.2T$ $I_{am} = 1.2I$	
		$V_a = E_{b2} + I_{am}R_a$	
		$V_a = \delta V_s$	
		$E_{b2} = 86 V$	2M
		$I_{am} = 28.8 \text{ A}$	
		$V_a = 143.6 V$	
		$\delta = 0.624$	
3.		VSI controlled IM drive – Circuit diagram	2M
		VSI with PWM controlled IM drive - Circuit diagram	2M
		VSI controlled IM drive – Waveform	2M
		VSI controlled IM drive – Explanation	2M

		2M
4.	Expression of slip speed of IM	2M
	Explanation of slip speed of IM	2M
	Expression of mechanical power of IM	2M
	Evaluation of mechanical power of IM	3M
5.	Load commutated inverter – Circuit diagram	2M
	Load commutated inverter – Waveforms	3M
	Closed loop operation and explanation	
	@@@@	

Course Coordinator

H-S- 8y HOD

SREE VIDYANIKETHAN ENGINEERING COLLEGE (AUTONOMOUS)

Sree Sainath Nagar, Tirupati MARKS AWARD SHEET

Name of the Faulty Member E. PARIMALASUNDAR

III year BTECH II Sem, Mid Examination 2019-2020

(Notification Name :III B.Tech II Semester (SVEC-16) Mid- I Examinations, February - 2020)

Branch BTECH-EEE Section - B Subject With Code 16BT60201 - Power Semiconductor Drives Max. Marks 30

Date of Exam: 11-02-2020

SI. No	Roll No.	Total Marks in Figures	Total Marks in Words		
1	17121A0266	24	TWO FOUR		
2	17121A0268	12	ONE TWO		
3	17121A0269	A	ABSENT		
4	17121A0270	24	TWO FOUR		
5	17121A0271	16	ONE SIX		
6	17121A0272	18	ONE EIGHT		
7	17121A0273	28	TWO EIGHT		
8	17121A0274	23	TWO THREE		
9	17121A0275	15	ONE FIVE		
10	17121A0276	24	TWO FOUR		
11	17121A0277	26	TWO SIX		
12	17121A0278	23	TWO THREE		
13	17121A0279	20	TWO ZERO		
14	17121A0280	A	ABSENT		
15	17121A0281	28	TWO EIGHT		
16	17121A0282	22	TWO TWO		
17	17121A0283	22	TWO TWO		
18	17121A0284	24	TWO FOUR		
19	17121A0285	25	TWO FIVE		
20	17121A0286	27	TWO SEVEN		
21	17121A0288	16	ONE SIX		
22	17121A0289	18	ONE EIGHT		
23	17121A0290	13	ONE THREE		
24	17121A0291	22	TWO TWO		
25	17121A0292	12	ONE TWO		
26	17121A0293	17	ONE SEVEN		
27	17121A0294	00	ZERO ZERO		
28	17121A0295	23	TWO THREE		
29	17121A0296	23	TWO THREE		
30	17121A0297	27	TWO SEVEN		
31	17121A0298	26	TWO SIX		
32	17121A0299	18	ONE EIGHT		
33	17121A02A0	23	TWO THREE		
34	17121A02A1	23	TWO THREE		
35	17121A02A2	20	TWO ZERO		
36	17121A02A3	15	ONE FIVE		
37	17121A02A4	06	ZERO SIX		
38	17121A02A5	27	TWO SEVEN		
39	17121A02A6		TWO TWO		
40	17121A02A7		TWO ZERO		

SL. No	Roll No.	Total Marks in Figures	Total Marks in Words
41	17121A02A8	29	TWO NINE
42	17121A02A9	29	TWO NINE
43	17121A02B0	23	TWO THREE
44	17121A02B1	23	TWO THREE
45	17121A02B2	26	TWO SIX
46	17121A02B3	27	TWO SEVEN
47	17121A02B4	15	ONE FIVE
48	17121A02B5	21	TWO ONE
49	17121A02B6	21	TWO ONE
50	17121A02B7	26	TWO SIX
51	17121A02B8	28	TWO EIGHT
52	17121A02B9	12	ONE TWO
53	17121A02C0	16	ONE SIX
54	17121A02C1	20	TWO ZERO
55	17121A02C2	22	TWO TWO
56	17121A02C3	12	ONE TWO
57	17121A02C4	04	ZERO FOUR
58	17121A02C5	20	TWO ZERO
59	17121A02C6	19	ONE NINE
60	17121A02C7		ONE FIVE
61	17121A02C8	25	TWO FIVE
62	17121A02C9		TWO EIGHT
63	17121A02D0		TWO ZERO

Date and Time of Entry : 18-02-2020 03:49 PM

MARKS POSTED BY

Name of the Faculty Dr. E. Parimalas undar MAR MAR Name of the Faculty Dr. K. Suresh

Signature MARKS VERIFIED BY

Signature

gh SP (

SREE VIDYANIKETHAN ENGINEERING COLLEGE (AUTONOMOUS)

Sree Sainath Nagar, Tirupati MARKS AWARD SHEET

Name of the Faulty Member E. PARIMALASUNDAR

III year BTECH II Sem, Mid Examination 2019-2020

(Notification Name :III B.Tech II Semester (SVEC-16) Mid-II Examinations, November - 2020)

Branch BTECH-EEE Section - B Subject With Code 16BT60201 - Power Semiconductor Drives Max. Marks 30

Date of Exam: 17-11-2020

SI. No	Roll No.	Total Marks in Figures	Total Marks in Words	SI No		Roll No.	Total Marks in Figures	Total Marks in Words
1	17121A0266	23	TWO THREE	41	1	17121A02A8	26	TWO SIX
2	17121A0268	20	TWO ZERO	42	2	17121A02A9	27	TWO SEVEN
3	17121A0269	A	ABSENT	43	3	17121A02B0	21	TWO ONE
4	17121A0270	18	ONE EIGHT	44	4	17121A02B1	15	ONE FIVE
5	17121A0271	14	ONE FOUR	45	5	17121A02B2	16	ONE SIX
6	17121A0272	18	ONE EIGHT	4	6	17121A02B3	23	TWO THREE
7	17121A0273	22	TWO TWO	4	7	17121A02B4	25	TWO FIVE
8	17121A0274	16	ONE SIX	4	8	17121A02B5	18	ONE EIGHT
9	17121A0275	15	ONE FIVE	4	9	17121A02B6	15	ONE FIVE
10	17121A0276	24	TWO FOUR	5	_	17121A02B7	04	ZERO FOUR
11	17121A0277	A	ABSENT	5	_	17121A02B8	26	TWO SIX
12	17121A0278	20	TWO ZERO	5	_	17121A02B9	15	ONE FIVE
13	17121A0279	A	ABSENT	5	_	17121A02C0	16	ONE SIX
14	17121A0280	20	TWO ZERO	5	_	17121A02C1	12	ONE TWO
15	17121A0281	24	TWO FOUR	5		17121A02C2	A	ABSENT
16	17121A0282	23	TWO THREE	5	_	17121A02C3	12	ONE TWO
17	17121A0283	16	ONE SIX	5		17121A02C4	03	ZERO THREE
18	17121A0284	24	TWO FOUR	-	8	17121A02C5	24	TWO FOUR
19	17121A0285	A	ABSENT	5	9	17121A02C6	18	ONE EIGHT
20	17121A0286	27	TWO SEVEN	6	0	17121A02C7	A	ABSENT
21	17121A0288	18	ONE EIGHT	6	1	17121A02C8	16	ONE SIX
22	17121A0289	16	ONE SIX	6	2	17121A02C9	25	TWO FIVE
23	17121A0290	14	ONE FOUR	6	3	17121A02D0	14	ONE FOUR
24	17121A0291	24	TWO FOUR					
25	17121A0292	19	ONE NINE					
26	17121A0293	18	ONE EIGHT					
27	17121A0294	A	ABSENT					
28	17121A0295	17	ONE SEVEN					
29	17121A0296	A	ABSENT					
30	17121A0297	24	TWO FOUR					
31	17121A0298	23	TWO THREE					
32	17121A0299	17	ONE SEVEN					
33	17121A02A0	16	ONE SIX	_				
34	17121A02A1	16	ONE SIX	_				
35	17121A02A2	20	TWO ZERO	-				
36	17121A02A3	16	ONE SIX	-				
37	17121A02A4	13	ONE THREE	-				
38	17121A02A5	A	ABSENT	-				
39	17121A02A6	21	TWO ONE	4				
40	17121A02A7	23	TWO THREE					

Date and Time of Entry : 24-11-2020 02:52 PM

MARKS POSTED BY

Name of the Faculty Dr. E. Parimalascinday

Signature

MARKS VERIFIED BY

Dr. K. Suresh

Signature

Ja -

Name of the Faculty

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(Autonomous)

Sree Sainath Nagar, Tirupati - 517 102

Department of EEE

SVEC/EEE/2019-20/B13

24th February, 2020

CIRCULAR

Students of III B.Tech EEE whose marks are less than 12 in MID-I examinations are requested to attend Remedial Classes Scheduled from 01.03.2020 to 04.03.2020 for the following courses in Room No. 324.

PSD	:	Power Semiconductor Drives	
PSA	:	Power System Analysis	

Students are requested to attend the classes regularly failing which disciplinary action will be taken.

Encl.: Remedial Class Time Table.

Throb

SREE VIDYANIKETHAN ENGINEERING COULEGE

(Autonomous) ANIKETHAN Engineering College (Autonomous) Sree Sainath Nagar, Tirupati – 517 102

Department of EEE

SVEC/EEE/2019-20/B13

24th February, 2020

REMEDIAL CLASSES FOR WEAK / SLOW LEARNERS

	Time Table Room No: 324	
Unit to be Covered	: I,II	
	: 01.03.2020 to 04.03.2020; 2.30 PM to 4.30 P	M
Test considered for identifying Weak Learners	: Mid -I	
Academic Year	: 2019-2020	
Year/Semester	: III B.Tech. II Semester (SVEC-16)	

Day	Date	02.30 - 03.30 PM	03.30 - 04.30 PM
Monday	01.03.2020	PSD	PSD
Tuesday	02.03.2020	PSA	PSA
Wednesday	03.03.2020	PSA	PSD
Thursday	04.03.2020	PSD	PSA
PSD : P	ower Semiconduc	ctor Drives : Mr. E	3. Hemanth Kumar Reddy

Frol

H-5-54 HOD, EEE

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(Autonomous)

Sree Sainath Nagar, Tirupati - 517 102

Department of EEE

SVEC/EEE/2019-20/B13

8th December,2020

REMEDIAL CLASSES IMPACT ANALYSIS

Year/Semester:III B.Tech. II Semester (SVEC-16)Name of the Course:POWER SEMICONDUCTOR DRIVES (16BT60201)

Academic Year

Т

: 2019-2020

S.No.	ROLL No.	NAME OF THESTUDENT	Marks in Mid-1 (Max. Marks: 30)	Marks in Mid-2 (Max. Marks: 30)
1	17121A0235	CHIDIPUDI MANOJ KUMAR REDDY	A	24
2	17121A0269	HARIJANA VINOD KUMAR	A	А
3	17121A0280	KADEMANE BASAVARAJU	A	20
4	17121A0294	KOMARI ASHOK KUMAR	0	A
5	17121A02A4	LIKITH KODEDHALA	6	13
6	17121A02C4	MUDDAPATI CHANDRA KIRAN	4	3
7	18125A0204	ARASURU MADHAVI	Α	A
8	18125A0207	BUGIDE SUJATHA	A	A
9	18125A0219	KAMPA PRAVEEN KUMAR	9	12
10	18125A0231	MAMANI SAI GANESH	Α	23
11	18125A0241	PARLAPALLI REDDY PRATHAP	9	5
12	18125A0243	PATNAM SAI KIRAN	8	12

Analysis

No. of Slow Learners identified		12
No. of students attended Remedial Classes (90% Attendance)		
No. of students secured Marks < 40%		06
No. of students secured Marks Between 40% and 60%	÷	
No. of students secured Marks ≥ 60%	•	03
N	1.00	05

CO-ORDINATOR REMEDIAL CLASSES

H.S. Sy by

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(Autonomous) Sree Sainath Nagar, Tirupati-517 102 Department of Electrical and Electronics Engineering Attendance and Progress Report

То		meenuance	e anu riogi ess ke	port
Sri/Mrs.	C NEELAKANTA REDD	Y	Roll No.	17121A0233
P/0	CHAPPIDI VENKATA R	AMANA REDDY		
Door No.	#A/12		Name	CHAPPIDI VENKATA RAMANA REDDY
Street	SARVARAJU PETA			
Town	YERRAGUNTLA		Year	III Year
Mandal	YERRAGUNTLA			
District	Kadapa	516309	Semester	II
	Andhra Pradesh			
			Branch	EEE

Dear Parent / Guardian

The details of attendance of your Son / Daughter studying in **III Year** B. Tech - **II** Semester, EEE up to **31/07/2020** is as follows

Attendance				
Attendance particulars from	16/12/2019	to	31/07/2020	
No. of Classes Conducted		358		
No. of Classes attended		301		
Percentage of Attendance		92.70		

As per the SVEC (Autonomous) regulations, a student has to put in a minimum of 75 % attendance in aggregate. A student securing less than 65 % attendance will be detained and has to repeat the Semester when offered next by paying the tuition fee again. You are requested to counsel your ward accordingly.

Signature of the Counselor

Name Dr. I. Kumara Swamy

Mobile 9985015365

Please update the contact address, Mobile / Telephone numbers etc. with us.

Roll No.:17121A0233Name:CHAPPIDI VENKATA RAMANA REDDY

Exam: III Year, II-Sem Mid-II

S. No	Subject	Maximum Marks	Marks Obtained
1	Management Science	30	15
2	Power Semiconductor Drives	30	27
3	Power System Analysis	30	20
4	Programmable Logic Controllers	30	Not Applicable
5	Object Oriented Programming	30	Not Applicable
6	Computer Networks	30	26
7	Design and Estimation of Electrical Systen	30	18
8	Digital Signal Processing for Electrical Eng	30	Not Applicable
9	Electrical Machine Design	30	Not Applicable
10	HVDC Transmission	30	Not Applicable
11	Advanced Control Systems	30	Not Applicable
12	High Voltage Engineering	30	23
13	Special Electrical Machines	30	Not Applicable
14	Power Electronics and Drives Lab	50	45
15	Power System – I Lab	50	40

Academic performance till date

Year	Semester	Maximum Semester marks	Maximum marks for Passed subjects	Marks obtained in passed subjects	Percentage*	No. of subjects failed	Percentage Attendance
I Year	I Sem	900	900	806	89.56	0	99.81
I Year	II Sem	900	900	775	86.11	0	93.97
II Year	I Sem	900	900	730	81.11	0	93.44
II Year	II Sem	900	900	687	76.33	0	12/11/10 11/11/11
III Year	I Sem	900	900	691	76.78	0	91.56 84.79

* Percentage of marks doesn't include failed subjects.

31 Signature of Counselor

Name: Dr. I. Kumara Swamy Mobile: 9985015365

Note:

There may be some discrepancies in the marks shown above due to manual entry. Please contact HOD, EEE / Counselor in the case of any discrepancies

·2.2 HOD, EEE

Registered Post

-

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(Autonomous) Sree Sainath Nagar, Tirupati-517 102 Department of Electrical and Electronics Engineering Attendance and Progress Report

10				
Sri/Mrs. P/O	PEMIREDDY TIRUMA PEMIREDDY PAVAN	LA REDDY	Roll No.	17121A02D8
Door No.	#.		Name	PEMIREDDY PAVAN
Street	POONDLACHENNUPA	LLI		
Town Mandal	BADVELU		Year	III Year
District	B.MATAM Kadapa	F16330	-	
- 1000 100	Andhra Pradesh	516228	Semester	II
			Branch	EEE

Dear Parent / Guardian

The details of attendance of your Son / Daughter studying in **III Year** B. Tech - **II** Semester, EEE up to **29/02/2020** is as follows

Attendance particulars from	16/12/2019	to	29/02/2020
No. of Classes Conducted		237	
No. of Classes attended		154	
Percentage of Attendance		64.98	

As per the SVEC (Autonomous) regulations, a student has to put in a minimum of 75 % attendance in aggregate. A student securing less than 65 % attendance will be detained and has to repeat the Semester when offered next by paying the tuition fee again. You are requested to counsel your ward accordingly.

Since your son/ daughter has not put in a minimum of 75 % attendance, you are requested to meet the HOD, EEE on or before **11/3/2020**

Signature of the Counselor

Name Mr. K. Jyotheeswara Reddy

Mobile 9441097835

Please update the contact address, Mobile / Telephone numbers etc. with us.

Roll No.: 17121A02D8 Name: PEMIREDDY PAVAN

Exam: III Year, II-Sem Mid-I

	Subject	Maximum Marks	Marks Obtained
S. No		30	26
1	Management Science	30	23
2	Power Semiconductor Drives	10100	18
3	Power System Analysis	30	Not Applicable
4	Programmable Logic Controllers	30	
5	Object Oriented Programming	30	Not Applicable
	Computer Networks	30	12
6	Design and Estimation of Electrical System	30	Not Applicable
7	Digital Signal Processing for Electrical Eng		Not Applicable
8		30	23
9	Electrical Machine Design		Not Applicable
10	HVDC Transmission	30	
11	Advanced Control Systems	30	Not Applicable
12	High Voltage Engineering	30	18
13	Special Electrical Machines	30	Not Applicable
14	Power Electronics and Drives Lab	50	45
15	Power System – I Lab	50	42

Academic performance till date

Year	Semester	Maximum Semester marks	Maximum marks for Passed subjects	Marks obtained in passed subjects	Percentage*	No. of subjects failed	Percentage Attendance
I Year	I Sem	900	900	718	79.78	0	94.66
I Year	II Sem	900	900	627	69.67	0	87.92
II Year	I Sem	900	900	666	74.00	0	82.69
II Year	II Sem	900	900	632	70.22	0	79.24
II Year	I Sem	900	900	670	74.44	0	78.70

* Percentage of marks doesn't include failed subjects.

Signature of Counselor

Name: Mr. K. Jyotheeswara Reddy Mobile: 9441097835

Note:

There may be some discrepancies in the marks shown above due to manual entry. Please contact HOD, EEE / Counselor in the case of any discrepancies

N-5.81 HOD, EEE