

 SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An autonomous institution affiliated to JNTUA, Anantapuramu)

SreeSainath Nagar, Tirupati – 517 102.

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Lab Manual

EMBEDDED SYSTEMS LAB

(16BT70432)

(IV B. Tech., I-Semester, EEE)

Prepared by
Dr. G. HARIKRISHNAN

Associate Professor
Department of EEE

(An Autonomous institute affiliated of JNTUA, Anantapuramu)

Sree Sainath Nagar, Tirupati – 517 102

Department of Electrical and Electronics Engineering

Lab Manual
EMBEDDED SYSTEMS

(16BT70432)

(IV B.Tech., I-Semester, EEE)

 (An Autonomous institute affiliated of JNTUA, Anantapuramu)

 Sree Sainath Nagar, Tirupati – 517 102

Department of Electrical & Electronics Engineering

List of Contents
Embedded Systems Lab (16BT70432)

Title Page No.

Vision & Mission i

PEOs, POs & PSOs ii

Syllabus iv

CO-PO-PSO Mapping vi

Rubrics for Embedded Systems Lab vii

Day to Day Evaluation viii

Internal Marks Evaluation x

List of Equipment Needed xii

General Instructions xiii

Exp-1
Introduction to MSP430 launch pad and Programming Environment. (Study
Experiment) 1

Exp-2
Read input from switch and Automatic control/flash LED (soft-ware delay). 5

Exp-3 Interrupts programming example using GPIO. 9

Exp-4
Configure watchdog timer in watchdog mode & interval mode. 11

Exp-5 Configure timer block for signal generation (with given frequency) 14

Exp-6 Read Temperature of MSP430 with the help of ADC.
 16

Exp-7 Test various Power Down modes in MSP430. 18

Exp-8 PWM Generator
23

Exp-9 Use Comparator to compare the signal threshold level
25

Exp-10 Speed Control of DC Motor 26

Exp-11 Master slave communication between MSPs using SPI
30

Exp-12 Networking MSPs using Wi-Fi.
35

i

SREE VIDYANIKETHAN ENGINEERING COLLEGE
(An Autonomous institute affiliated of JNTUA, Anantapuramu)

Sree Sainath Nagar, Tirupati – 517 102

Vision

To be one of the Nation’s premier Engineering Colleges by achieving the highest

order of excellence in Teaching and Research.

Mission

Through multidimensional excellence, we value intellectual curiosity, pursuit of

knowledge building and dissemination, academic freedom and integrity to enable

the students to realize their potential. We promote technical mastery of Progressive

Technologies, understanding their ramifications in the future society and nurture

the next generation of skilled professionals to compete in an increasingly complex

world, which requires practical and critical understanding of all aspects.

Department of Electrical & Electronics Engineering

Vision

To become the Nation’s premiere Centre of excellence in electrical engineering

through teaching, training, research and innovation to create competent

engineering professionals with values and ethics.

Mission

1 Department of Electrical Engineering strives to create human resources in

Electrical Engineering to contribute to the nation development and improve

the quality of life.

2 Imparting Knowledge through implementing modern curriculum, academic

flexibility and learner centric teaching methods in Electrical Engineering.

3 Inspiring students for aptitude to research and innovation by exposing them

to industry and societal needs to create solutions for contemporary problems.

4 Honing technical and soft skills for enhanced learning outcomes and

employability of students with diverse background through comprehensive

training methodologies.

5 Inculcate values and ethics among students for a holistic engineering

professional practice.

ii

SREE VIDYANIKETHAN ENGINEERING COLLEGE
(An Autonomous institute affiliated of JNTUA, Anantapuramu)

Sree Sainath Nagar, Tirupati – 517 102

Department of Electrical & Electronics Engineering

PEOs, POs & PSOs
Embedded Systems Lab (16BT70432)

Program Educational Objectives - B.Tech - EEE

1. Graduates will be enrolled in academic program in the disciplines of electrical

engineering or other disciplines.

2. Graduates will be employed as productive and valued engineers in reputed industries.

3. Graduates will assume increasingly responsible positions and use the technical skills and

analytical acumen to address professional values, ethics, leadership, and team skills for

execution of complex technological solutions.

Program Outcomes - B.Tech – EEE

1. Acquire knowledge of computing mathematics, sciences and concepts of electrical

engineering.

2. Ability to perform analysis of electrical power systems.

3. Design and develop electric machines power electronic converters, control systems and

schemes of electrical power transmission and protection.

4. Skills to solve problems in electric circuits, efficiency of electric machines and power

system stability.

5. Use of electrical engineering principles to modern electric generation, transmission and

distribution.

6. Create solutions of social context the impact of electrical engineering.

7. Practice electrical engineering in compliance with environmental standards.

8. Follow ethical code of conduct in professional activities.

9. Achieve personal excellence and ability to work in groups.

10. Develop effective communication in professional transactions.

11. Life skills for effective project management.

12. Appreciate the significance and applications of electrical engineering and to engage in

lifelong learning for knowledge and skill up gradation.

iii

Program Specific Outcomes

On successful completion of the program, engineering graduates will

1 Demonstrate knowledge of Electrical and Electronic circuits, Electrical Machines, Power

Systems, Control Systems, and Power Electronics for solving problems in electrical and

electronics engineering.

2 Analyze, design, test and maintain electrical systems to meet the specific needs of the

Industry and society.

3 Conduct investigations to address complex engineering problems in the areas of

Electrical Machines, Power Systems, Control Systems and Power Electronics.

4 Apply appropriate techniques, resources and modern tools to provide solutions for

problems related to electrical and electronics engineering.

iv

(An Autonomous institute affiliated of JNTUA, Anantapuramu)

 Sree Sainath Nagar, Tirupati – 517 102

Department of Electrical & Electronics Engineering

Syllabus

IV B.Tech.,I-Semester, EEE

L T P C

16BT70432: EMBEDDED SYSTEMS LAB - - 3 2

DAY-TO-DAY

EVALUATION

INTERNAL

EVALUATION

END LAB

EXAMINATION
TOTAL

30 MARKS 20 MARKS 50 MARKS 100 MARKS

PREREQUISITES: Course on Embedded systems.

COURSE DESCRIPTION:

IDE for Embedded System Design using MSP430; Interfacing Switch & LED; Timers-WDT,

Configuring, Programming; ADC-usage; Power down modes; DAC; PWM Generator; Networking

- SPI, Wi-Fi.

COURSE OUTCOMES: On successful completion of the course, students will be able to

CO1. Demonstrate knowledge in designing complex energy efficient embedded systems.

CO2. Analyze usage of various on-chip resources like GPIO, Timers, Interrupts, ADC, DAC, Comparator,

SPI.

CO3. Design embedded systems to suit market requirements.

CO4. Solve engineering problems by proposing potential solutions using industry choice advanced

Microcontrollers.

CO5. Apply appropriate techniques, resources, and CCSV6 based IDE for modeling embedded systems

with understanding of limitations.

CO6. Provide embedded system solutions for societal needs.

CO7. Work individually and in a group to develop embedded systems.

CO8. Communicate effectively in oral and written form in the field of embedded systems.

DETAILED SYLLABUS:
Conduct any TEN experiments from the following:

1. Introduction to MSP430 launch pad and Programming Environment.

2. Read input from switch and Automatic control/flash LED (soft-ware delay).

3. Interrupts programming example using GPIO.

4. Configure watchdog timer in watchdog & interval mode.

5. Configure timer block for signal generation (with given frequency).

6. Read Temperature of MSP430 with the help of ADC.

7. Test various Power Down modes in MSP430.

8. PWM Generator.

9. Use Comparator to compare the signal threshold level.

10. Speed Control of DC Motor

11. Master slave communication between MSPs using SPI.

12. Networking MSPs using Wi-Fi.

TOOL REQUIREMENT:

Code Composer Studio Version 6, MSP430 based launch pads, Wi-Fi booster pack.

REFERENCE BOOKS:

1. John H Davies, MSP430 Microcontrollers Basics, Newnes Pub-lishers, 1

st
 edition, 2008.

2. C P Ravikumar, MSP430 Microcontrollers in Embedded Sys-tem Projects, Elite
 Publishing House , 1

st
edition, 2012.

v

(An Autonomous institute affiliated of JNTUA, Anantapuramu)

Sree Sainath Nagar, Tirupati – 517 102

Department of Electrical & Electronics Engineering

IV B.Tech., I-Semester, EEE
Embedded Systems Lab (16BT70432)

Course

Outcomes

Program Outcomes Program Specific Outcomes

PO1 PO2 PO3 PO4 PO5 PO6 PO9 PO10 PSO1 PSO2 PSO3 PSO4

D
E

M
O

N
S

T
R

A

T
IO

N

A
N

A
L

Y
S

IS

D
E

S
IG

N

P
R

O
B

L
E

M

 S
O

L
V

IN
G

A
P

P
L

Y

E
N

G
 &

S
O

C
IE

T
Y

W
O

R
K

IN
D

IV
ID

U
A

L

C
O

M
M

U
N

IC
A

T
IO

N

CO1

CO2

&

CO3

CO4

CO5

CO1 H H

CO2 M H
H

CO3 M M H H

CO4 M M M H H

CO5 M L M M H H

CO6 M M M M M H

CO7 M M M M M M H

CO8 M M M M M M M H

Correlation Levels: H - High M - Medium L – Low

(An Autonomous institute affiliated of JNTUA, Anantapuramu)

Sree Sainath Nagar, Tirupati – 517 102

Department of Electrical & Electronics Engineering

Rubrics
Embedded Systems Lab (16BT70432)

S.

No

Course Outcome

Rubric 1 Rubric 2 Rubric 3 Score

X
(Max 5M)

(1-2)M
Average

(3-4) M
Good

(5)M
Very Good

1

CO1

PO1

DemonstDemonstrate knowledge in designing

complex energy efficient embedded

systems.

Unable to recall the

basic theoretical

knowledge of the
experiment and

unable to follow the

practical procedure

Able to recall the

basic theoretical

knowledge of the
experiment and

unable to follow the

practical procedure

Able to recall the

basic theoretical

knowledge of the
experiment and able

to follow the

practical procedure.

2

CO2

PO2

Analyze usage of various on-chip resources

like GPIO, Timers, Interrupts, ADC, DAC,

Comparator, SPI.

Unable to analyse

Characteristics of

servomotor.

Able to explain the

operation of motors

Able to analyse and

apply,

Power electronics

circuits for real time

3

CO3

PO3

Design embedded systems to suit market
requirements.

Unable not able to
follow the

experimental

procedures and
mathematical

calculations

Able to follow the

experimental
procedures and

mathematical

calculations.
But unable to

evaluate and interpret

properly.

Able to follow

experimental
procedures and

mathematical

calculations. Also
 able to present and

interpret properly

and co-relate the
practical with the

theory.

4

CO4

PO4

Solve engineering problems by proposing
potential solutions using industry choice

advanced Microcontrollers.

Unable to interpret
the experimental

results with the

programming and
control strategy to

meet the required

specifications

able to interpret the
experimental results

with the

programming and
control strategy to

meet the required

specifications. Unable

to plan and design.

Able to plan and
design and also to

interpret the

experimental results
with the

programming and

control strategy to

meet the required

specifications.

5 CO5 PO5

Apply appropriate techniques, resources,
and CCSV6 based IDE for modeling

embedded systems with understanding of

limitations.

Unable to select
appropriate tool and

develop the program

for simulation

Able to select
appropriate tool for

simulation but lags in

developing the
model/program for

simulation.

Able to select
appropriate tool and

develop the program

logic for simulation.
Able to interpret the

results and correlate

them with practical.

6

CO6

PO6

Provide embedded system solutions for

societal needs.

Unable to handle as

an individual.

Occasionally works

as an individual

Able to work and

execute the problem

individually.

7

CO7

PO9

Work individually and in a group to

develop Embedded Systems.

Lab report is not

systematic

Lab report is

systematic at some

places to demonstrate

Report is fully

systematic and also

in specified format.

CO8

PO10 Communicate effectively in oral and

written form in the field of Embedded

Systems.

Unable to follow the

professional code of

ethics

able to follow the

professional code of

ethics and can unable

to define standard

code of ethics

able and apply the

professional code of

ethics.

8

6

Total Score (Max 30M) Y =  X i

i1

9

Y
Average Marks Obtained Z =

6
10 Marks Obtained = Z * 3

11 Assessment Average /Good / Very Good

vi

vii

 (An Autonomous institute affiliated of JNTUA, Anantapuramu)

 Sree Sainath Nagar, Tirupati – 517 102

Department of Electrical & Electronics Engineering

S.

No.
Experiment Name

CO1 CO2 CO3 CO4 CO5 CO6 CO7 CO8

TOTAL
Signatu

re of the

Faculty

D
E

M
O

N
S

T
R

A
T

I
O

N

A
N

A
L
Y

S
I
S

D
E

S
I
G

N

P
R

O
B

L
E

M

 S
O

L
V

I
N

G

A
P

P
L
Y

E
N

G
 &

 S
O

C
I
E

T
Y

W
O

R
K

I
N

D
I
V

I
D

U
A

L

C
O

M
M

U
N

I
C

A
T

I
O

N

3 M 3 M 6 M 3 M 3 M 3 M 3 M 6 M 30 M

1

Introduction to MSP430
launch pad and
Programming Environment.
(Study Experiment)

2
Read input from switch and
Automatic control/flash
LED (soft-ware delay).

3
Interrupts programming
example using GPIO.

4
Configure watchdog timer
in watchdog mode &
interval mode.

5

Configure
timer
block for
signal
generation
(with
given
frequency)

6

Read Temperature of
MSP430 with the help of
ADC.

7
Test various Power Down

modes in MSP430.

8
PWM Generator

9

Use Comparator to compare

the signal threshold level

10 Speed Control of DC Motor

11

Master slave

communication between

MSPs using SPI

12

Networking MSPs using

Wi-Fi.

Year and Semester: IV B.Tech. I Semester Roll No. :

Name of the Laboratory: Embedded Systems Lab Course Code: 16BT70432

viii

 (An Autonomous institute affiliated of JNTUA, Anantapuramu)

 Sree Sainath Nagar, Tirupati – 517 102

Department of Electrical & Electronics Engineering

IV B.Tech., I-Semester, EEE
Embedded Systems Lab (16BT70432)

General Instructions

1. Shirts should be tucked in.

2. Perform only appropriate experiments and be sure that you understand the procedure

involved before you begin.

3. Supply to test table should be obtained only through the lab technician.

4. Energize the circuit only after getting approval from the faculty-in-charge.

5. Students who are not appropriately attired will not be allowed to perform experiments.

6. No horse-play before, during or after lab.

7. Be familiar with emergency procedures & know the location of emergency equipment.

First aid kit for minor injuries is with the lab technician.

8. Do not modify equipment settings unless instructed by lab handout or lab instructor.

9. Unauthorized experiments and working in the laboratory outside the class hours without

permission are strictly prohibited.

10. Keep bags in the designated areas.

11. If you feel unhealthy or dizzy while doing the experiment, stop immediately, sit down

and notify the instructor.

SVEC, EEE 1

P
ag

e1

1. BLINK IN-BUILD LED1 & LED2

(1A) To Blink GREEN LED with GPIO

AIM: The main objective of this experiment is to blink the on-board, GREEN LED

(connected to P1.0) using GPIO.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

 4) Patch Chords

THEORY :

The MSP430F5529 has two LED’s connected to GREEN LED (P1.0) and RED LED

(P4.6) on the MSP430F5529 Launch-Pad for visual feedback. In this experiment, the

code programmed into the MSP430F5529 processor toggles the output on Port P1.0

at fixed time intervals computed within the code. A HIGH on P1.0 turns the LED

ON, while a LOW on P1.0 turns the LED OFF. Thus, the toggling output blinks the

GREEN LED connected to it.

PROGRAM:

#include<msp430.h>

intmain(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

PM5CTL0 &= ~LOCKLPM5; // Disable the GPIO power-on default high-

impedance mode to activate previously configured port settings

P1DIR |= 0x01; // set the pin 1.0 direction to O/P

while(1)

{

volatile unsigned long i;

P1OUT ^=0x01; // blink LED

 i = 50000;

doi--;

while(i != 0);

}

return 0;

}

SVEC, EEE 2

P
ag

e2

PROCEDURE:

1. 1. Connect the MSP430F5529 LaunchPad to the PC using the USB cable supplied.

2. Build, program and debug the code into the LaunchPad using CCS to view

the status of the LED.

3. In the CCS debug perspective, select View --> Registers.

RESULT :

(1B) To Blink an RED LED with GPIO

AIM: The main objective of this experiment is to blink the onboard, RED LED

(connected to P4.6) using GPIO.

PROGRAM:

#include<msp430.h>

intmain(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

PM5CTL0 &= ~LOCKLPM5; // Disable the GPIO power-on default high-

//impedance mode to activate previously configured port settings

P4DIR |= 0x40; // set the pin 4.6 direction to O/P

while(1)

{

volatileunsignedlongi;

P4OUT ^=0x40;// blink LED

i = 50000;

doi--;

while(i != 0);

}

return 0;

}

RESULT :

SVEC, EEE 3

P
ag

e3

(1C) To Blink an RED LED & GREEN LED Together

AIM: The main objective of this experiment is to blink the onboard, RED LED

(connected to P4.6) and GREEN LED(connected to P1.0) together using GPIO.

PROGRAM:

#include<msp430.h>

intmain(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

PM5CTL0 &= ~LOCKLPM5; // Disable the GPIO power-on default //

 high-impedance mode to activate previously configured port settings

P1DIR |= 0x01; P4DIR |= 0x40;

P1OUT |= 0x01; P4OUT |= 0x40;

while(1)

{

volatileunsignedlongi;

P1OUT ^= 0x01;

P4OUT ^=0x40;

i = 50000;

doi--;

while(i != 0);

}

return 0;

}

RESULT :

(1D)To Blink an RED LED & GREEN LED Alternatively

AIM: The main objective of this experiment is to blink the onboard, RED LED

(connected to P4.6) and GREEN LED(connected to P1.0) alternatively using GPIO.

PROGRAM:

#include<msp430.h>

intmain(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

PM5CTL0 &= ~LOCKLPM5; // Disable the GPIO power-on default //high-

//impedance mode to activate previously configured port settings

SVEC, EEE 4

P
ag

e4

P1DIR |= 0x01;

P4DIR |= 0x40;

P1OUT |= 0x01;

P4OUT &= ~0x40;

while(1)

{

volatileunsignedlongi;

P1OUT ^= 0x01;

P4OUT ^=0x40;

i = 50000;

doi--;

while(i != 0);

}

return 0;

}

RESULT :

SVEC, EEE 5

P
ag

e5

2. READ INPUT FROM SWITCH AND GLOW LED

(2A)To Blink an GREEN LED using Button

AIM: The main objective of this experiment is to blink the onboard, GREEN LED

(connected to P1.0) whenever button (connected to P.1.1) is pressed and OFF when

released using GPIO.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

 4) Patch Chords

THEORY :

The MSP430F5529 has two LED’s and two push BUTTONS connected to GREEN

LED (P1.0),S2(P1.1) and RED LED (P4.6),S1(P4.5) on the MSP430F5529

LaunchPad for visual feedback. In this experiment, the code programmed into the

MSP430F5529 processor to turn on GREEN LED when button is pressed & OFF

when button is released are computed within the code.

PROGRAM:

#include<msp430.h>

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

PM5CTL0 &= ~LOCKLPM5; // Disable the GPIO power-on default high-

impedance mode //to activate previously configured port settings

P1DIR |= 0x01;

P1REN |= 0x02;

while(1)

{

if(P1IN & BIT1)

{

P1OUT &= ~BIT0;

 }

else

{

}

}

SVEC, EEE 6

P
ag

e6

P1OUT |= BIT0;

return 0;

}

PROCEDURE:

1. Connect the MSP430F5529 LaunchPad to the PC using the USB cable supplied.

2. Build, program and debug the code into the LaunchPad using CCS to view

the status of the LED.

3. In the CCS debug perspective, select View --> Registers.

RESULT :

(2B) To Blink an GREEN LED using Button with Delay 1sec

AIM:The main objective of this experiment is to make the green LED stay

ON for around 1 second every time the button is pressed.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

THEORY:

The MSP430F5529 has two LED’s and two push BUTTONS connected to GREEN

LED (P1.0),S2(P1.1) and RED LED (P4.6),S1(P4.5) on the MSP430F5529

LaunchPad for visual feedback. In this experiment, the code programmed into the

MSP430F5529 processor make the green LED stay ON for around 1 second every

time the button is pressed.

PROCEDURE:

1. Connect the MSP430F5529 LaunchPad to the PC using the USB cable supplied.

2. Build, program and debug the code into the LaunchPad using CCS to view the

status of the red LED.

3. In the CCS debug perspective, select View --> Registers.

SVEC, EEE 7

P
ag

e7

PROGRAM:

#include<msp430.h>

int main(void) {

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

// Disable the GPIO power-on default //high-//impedance mode to activate previously

configured port settings

PM5CTL0 &= ~LOCKLPM5;

P1DIR |= 0x01;

P1REN |= 0x02;

while(1){ volatileunsignedlongi;

if(P1IN & BIT1){

P1OUT &= ~BIT0;

 }else

{

}

P1OUT |= BIT0; i = 50000;

doi--;

while(i != 0);

}

return 0;

}

(2C) To Blink an GREEN LED & RED LED using Button

AIM: The main objective of this experiment is to turn the red LED ON when
the button is pressed and the green LED ON when the button is released.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

THEORY:

The MSP430F5529 has two LED’s and two push BUTTONS connected to GREEN

LED (P1.0),S2(P1.1) and RED LED (P4.6),S1(P4.5) on the MSP430F5529

SVEC, EEE 8

P
ag

e8

LaunchPad for visual feedback. In this experiment, the code programmed into the

MSP430F5529 processor turn the red LED ON when the button is pressed and the

green LED ON when the button is released.

PROCEDURE:

1. Connect the MSP430F5529 LaunchPad to the PC using the USB cable supplied.
2. Build, program and debug the code into the LaunchPad using CCS to view

the status of the LED.

3. In the CCS debug perspective, select View

--> Registers PROGRAM:

RESULT:

SVEC, EEE 9

P
ag

e9

3. INTERRUPTS PROGRAMMING EXAMPLE USING GPIO

AIM: The main objective of this experiment is to write a C program and
associated GPIO ISR using interrupt programming technique.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

THEORY:

The MSP430F5529 has two LED’s and two push BUTTONS connected to GREEN

LED (P1.0),S2(P1.1) and RED LED (P4.6),S1(P4.5) on the MSP430F5529

LaunchPad for visual feedback. In this experiment, the code programmed into the

MSP430F5529 processor toggle the GREEN LED whenever interrupt is generated.

MSP430FR59xx

/|\| XIN|-

| | | 32kHz

--|RST XOUT|-

| |

| P1.0 |--> LED
| P1.1 |--->S2

PROCEDURE:

1. Connect the MSP430F5529 LaunchPad to the PC using the USB cable supplied.

2. Build, program and debug the code into the LaunchPad using CCS to view

the status of the LED.

3. In the CCS debug perspective, select View --> Registers

4. Press the S2 and observe the GREEN LED toggled.

PROGRAM:

#include<msp430.h> intmain(void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT PM5CTL0 &= ~LOCKLPM5;

P1DIR |= BIT0; // Set P1.0 to output direction

P1REN |= BIT1; // Enable P1.1 internal resistance

P1OUT |= BIT1; // Set P1.1 as pull up resistance

SVEC, EEE 10

P
ag

e1
0

P1IES |= BIT1; // P1.1 High/Low Edge

P1IFG &= ~BIT1; // P1.1 IFG Cleared

P1IE |= BIT1; // P1.1 Interrupt Enabled

_bis_SR_register(LPM4_bits + GIE); // Enter LPM4 w/ interrupt

_no_operation();

return 0;

}

#pragma vector=PORT1_VECTOR

 interruptvoidPort_1 (void)

{

P1OUT ^= BIT0; // Toggle P1.0

P1IFG &= ~BIT1; // P1.1 IFG Cleared

}

RESULT:

SVEC, EEE 11

P
ag

e1
1

4. CONFIGURE WATCHDOG TIMER IN WATCHDOG MODE & INTERVAL

MODE

AIM: The main objective of this experiment is to configure watchdog timer module

in watchdog and Interval time mode and observe its output.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

THEORY:

WDT_A Operation

The watchdog timer module can be configured as either a watchdog or interval timer

with the WDTCTL register. WDTCTL is a 16-bit password-protected read/write

register. Any read or write access must use word instructions and write accesses must

include the write password 05Ah in the upper byte. Any write to WDTCTL with any

value other than 05Ah in the upper byte is a password violation and triggers a PUC

system reset, regardless of timer mode. Any read of WDTCTL reads 069h in the

upper byte. Byte reads on WDTCTL high or low part result in the value of the low

byte. Writing byte wide to upper or lower parts of WDTCTL results in a PUC.

Watchdog Timer Counter (WDTCNT)

The WDTCNT is a 32-bit up counter that is not directly accessible by software. The

WDTCNT is controlled and its time intervals are selected through the Watchdog

Timer Control (WDTCTL) register. The WDTCNT can be sourced from SMCLK,

ACLK, VLOCLK, or X_CLK on some devices. The clock source is selected with the

WDTSSEL bits. The timer interval is selected with the WDTIS bits.

Watchdog Mode

After a PUC condition, the WDT module is configured in the watchdog mode with an

initial ~32-ms reset interval using the SMCLK. The user must setup, halt, or clear the

watchdog timer prior to the expiration of the initial reset interval or another PUC is

generated. When the watchdog timer is configured to operate in watchdog mode,

either writing to WDTCTL with an incorrect password, or expiration of the selected

time interval triggers a PUC. A PUC resets the watchdog timer to its default

condition.

Interval Timer Mode

Setting the WDTTMSEL bit to 1 selects the interval timer mode. This mode can be

used to provide periodic interrupts. In interval timer mode, the WDTIFG flag is set at

the expiration of the selected time interval. A PUC is not generated in interval timer

mode at expiration of the selected timer interval, and the WDTIFG enable bit WDTIE

remains unchanged.

SVEC, EEE 12

P
ag

e1
2

When the WDTIE bit and the GIE bit are set, the WDTIFG flag requests an interrupt.

The WDTIFG interrupt flag is automatically reset when its interrupt request is

serviced, or it may be reset by software. The interrupt vector address in interval timer

mode is different from that in watchdog mode.

PROGRAM:

1. A WATCHDOG TIMER:INTERVAL TIMER MODE C PROGRAM:

{

WDTCTL = WDT_ADLY_250; // WDT 250ms, ACLK, interval timer

 IE1 |= WDTIE; // Enable WDT

 P1DIR |= 0x01; // Set P1.0 to __bis_SR_register(LPM3_bits + GIE); //

Enter LPM3

}

// Watchdog Timer interrupt service routine

#pragma vector=WDT_VECTOR

__interrupt voidwatchdog_timer(void)

{

 P1OUT ^= 0x01; // Toggle P1.0 using exclusive-OR

}

2. WATCHDOG MODE: C PROGRAM

intmain(void)

{

 WDTCTL = WDT_ARST_1000;

P1DIR |= 0x01;

P1OUT ^= 0x01;

__bis_SR_register(LPM3_bits);

}

3. WATCHDOG TIMER: WATCDOG MODE ALP PROGRAM

SVEC, EEE 13

P
ag

e1
3

WDCNT: 0000 0001

RESET mov.w #0280h,SP ; Initialize stackpointer

SetupWDT mov.w #WDT_ARST_1000N,&WDTCTL ; Set Watchdog Timer

 bis.b #WDTIE,&IE1

 bis.b #001h,&P1DIR ; P1.0 output

 xor.b #001h,&P1OUT ; Toggle P1.0

 bis.w #LPM3,SR ;

Mainloop jmp $

RESULT

SVEC, EEE 14

P
ag

e1
4

5.CONFIGURE TIMER BLOCK FOR SIGNAL GENERATION

AIM: The main objective of this experiment is to write a C program and

TIMER ISR using interrupt programming technique.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

THEORY:

The MSP430F5529 has two LED’s and two push BUTTONS connected to GREEN

LED (P1.0),S2(P1.1) and RED LED (P4.6),S1(P4.5) on the MSP430F5529

Launch-Pad for visual feedback. In this experiment, the code programmed into the

MSP430F5529 processor Toggle P1.0 using software and TA_0 ISR. Timer0_A is

configured for continuous mode, thus the timer overflows when TAR counts to

CCR0. In this example, CCR0 is loaded with 50000.

// ACLK = n/a, MCLK = SMCLK = TACLK = default DCO = ~1MHz

MSP430FR59xx

 /|\| XIN|-
| | | 32kHz

--|RST XOUT|-
| |

PROCEDURE:

| P1.0 |--> LED

1. Connect the MSP430F5529 LaunchPad to the PC using the USB cable supplied.

2. Build, program and debug the code into the LaunchPad using CCS to view

the status of the LED.

3. In the CCS debug perspective, select View --> Registers

4. Observe the GREEN LED blinks whenever timer overflows.

PROGRAM:

#include<msp430.h> intmain(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop WDT

// Configure GPIO

P1DIR |= BIT0; P1OUT |= BIT0;

SVEC, EEE 15

P
ag

e1
5

// Disable the GPIO power-on default high-impedance mode to activate

// previously configured port settings

PM5CTL0 &= ~LOCKLPM5;

TA0CCTL0 = CCIE; // TACCR0 interrupt enabled TA0CCR0 = 20000;

 TA0CTL = TASSEL SMCLK | MC UP; // SMCLK, UP mode

 bis_SR_register(LPM0_bits + GIE); // Enter LPM0 w/ interrupt

 no_operation(); // For debugger

}

// Timer0_A0 interrupt service routine

#if defined(TI_COMPILER_VERSION) || defined(IAR_SYSTEMS_ICC)

#pragma vector = TIMER0_A0_VECTOR

 interruptvoidTimer0_A0_ISR (void)

#elif defined(GNUC)

void attribute ((interrupt(TIMER0_A0_VECTOR))) Timer0_A0_ISR (void)

#else

#error Compiler not supported!

#endif

{

P1OUT ^= BIT0;

}

RESULT:

SVEC, EEE 16

P
ag

e1
6

6. READ TEMPERATURE OF MSP430 WITH THE HELP OF ADC

AIM: The main objective of this experiment is to measure temperature using

inbuilt ADC module.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

THEORY:

To use the on-chip temperature sensor, select the analog input channel INCHx =

1010. Any other configuration is done as if an external channel were selected,

including reference selection and conversion-memory selection. The temperature

sensor is part of the reference. Therefore, for devices with the REF module, in

addition to the input channels selection INCHx = 1010, configuring

ADC12REFON = 1 (for REFMSTR = 0) or REFON = 1 (for REFMSTR = 1) is

required to enable the temperature sensor. For the MSP430F54xx (non-A) devices,

which do not include the REF module, selecting the temperature sensor by

configuring INCHx = 1010 automatically enables the reference generator required

for the temperature sensor. Any other configuration is done as if an external

channel were selected, including reference selection and conversion-memory

selection.

SVEC, EEE 17

P
ag

e1
7

Figure shows a typical temperature sensor transfer function. The transfer function

that is shown is only an example; the device-specific data sheet contains the actual

parameters for a given device. When using the temperature sensor, the sample

period must be greater than 30 µs. The temperature sensor offset error can be large

and may need to be calibrated for most applications. Temperature calibration

values are available for use in the TLV descriptors (see the device-specific data

sheet for locations). Some MSP430 devices include calibration data that can be

used to compute temperature more accurately.

PROGRAM:

Read Temperature of MSP430 with the help of ADC

 #include<msp430.h>

 long temp;

 long IntDegC;

 intmain(void)

 {

 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

 ADC10CTL1 = INCH_10 + ADC10DIV_3; // Temp Sensor ADC10CLK/4

 ADC10CTL0 = SREF_1 + ADC10SHT_3 + REFON + ADC10ON + ADC10IE;

 while(1)

 {

ADC10CTL0 |= ENC + ADC10SC; // Sampling and conversion start

__bis_SR_register(CPUOFF + GIE); // LPM0 with interrupts enabled

 temp = ADC10MEM;

 IntDegC = ((temp - 673) * 423) / 1024;

 __no_operation(); // SET BREAKPOINT HERE

 }

 }

 // ADC10 interrupt service routine

 #pragma vector=ADC10_VECTOR

 __interrupt voidADC10_ISR (void)

 {

__bic_SR_register_on_exit(CPUOFF); // Clear CPUOFF bit from 0(SR)

 }

RESULT:

SVEC, EEE 18

P
ag

e1
8

7. TEST VARIOUS POWER DOWN MODE IN MSP430

AIM:The main objective of this experiment is to Configure the MSP-EXP430FR

Launchpad for Low Power Mode (LPM3) and measure current consumption both

in active and low power modes.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

THEORY:

The RTC_B module is used to set the time, start RTC operation,and read the

time from the respective RTC registers. Software will set the original time to

11:59:30 am on Friday October 7, 2011. Then the RTC will be activated

through software, and an alarm will be created for the next minute (12:00:00

pm). The device will then enter LPM3.5 awaiting the event interrupt. Upon

being woken up by the event, the LED on the board will be set.we will use

MSP-EXP430FR5969 as hardware platform and measure active mode and

standby mode current.

ACLK = 32.768kHz, MCLK = SMCLK = DCO = ~1MHz

MSP430FR59xx

/|\| XIN|-

| | | 32kHz

--|RST XOUT|-

| |

| P1.0 |--> LED

PROCEDURE:

1. Connect the MSP430F5529 LaunchPad to the PC using the USB cable supplied.

2. Build, program and debug the code into the LaunchPad using CCS to view
the status of the LED.

3. In the CCS debug perspective, select View --> Others-->Energy Trace

Technology

4. Note down the power consumption in Active mode and Low power mode 3.5.

SVEC, EEE 19

P
ag

e1
9

PROGRAM:

#include<msp430.h>

voidBoard_Init(void);

voidRTC_Init(void);

voidEnterLPM35(void);

voidWakeUpLPM35(void);

intmain(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop WDT

// Determine whether we are coming out of an LPMx.5 or a regular RESET.

if (SYSRSTIV == SYSRSTIV_LPM5WU)

{

}

else

{

}

 // When woken up from LPM3.5, reinit

WakeUpLPM35(); // LPMx.5 wakeup specific init code

 enable_interrupt(); // The RTC interrupt should trigger

while (1); // Forever loop after returning from RTC ISR.

// Init board & RTC, then enter LPM3.5

Board_Init(); // Regular init code for GPIO and CS

RTC_Init(); // Regular init code for RTC_B EnterLPM35();

}

voidBoard_Init(void)

{

// Port Configuration

P1OUT = 0x00;

P1DIR = 0xFF;

P2OUT = 0x00;

P2DIR = 0xFF;

P3OUT = 0x00;

P3DIR = 0xFF;

SVEC, EEE 20

P
ag

e2
0

P4OUT = 0x00;

P4DIR = 0xFF;

PJOUT = 0x00;

PJSEL0 |= BIT4 | BIT5;

PJDIR = 0xFFFF;

PM5CTL0 &= ~LOCKLPM5;

CSCTL0_H = CSKEY >>8; // Unlock CS registers

CSCTL1 = DCOFSEL_0; // Set DCO to 1MHz

CSCTL2 = SELA LFXTCLK | SELS DCOCLK | SELM DCOCLK;

CSCTL3 = DIVA 1 | DIVS 1 | DIVM 1; // Set all dividers to 1

CSCTL4 &= ~LFXTOFF;

do

{

CSCTL5 &= ~LFXTOFFG; // Clear XT1 fault flag

SFRIFG1 &= ~OFIFG;

}while (SFRIFG1&OFIFG); // Test oscillator fault flag

CSCTL0_H = 0; // Lock CS registers

}

voidRTC_Init(void)

{

// Configure RTC_B

RTCCTL01 = RTCBCD | RTCHOLD | RTCTEV MIN | RTCTEVIE; // BCD mode, RTC

hold,

enable RTC // event interrupt for each minute

RTCYEAR = 0x2011;

RTCMON = 0x10; // Month = 0x10 = October

RTCDAY = 0x07; // Day = 0x07 = 7th

RTCDOW = 0x05; // Day of week = 0x05 = Friday

RTCHOUR = 0x11; // Hour = 0x11

RTCMIN = 0x59; // Minute = 0x59

RTCSEC = 0x30; // Seconds = 0x30

RTCCTL01 &= ~RTCHOLD; // Start RTC calendar mode

voidEnterLPM35(void)

SVEC, EEE 21

P
ag

e2
1

{

PMMCTL0_H = PMMPW_H; // Open PMM Registers for write

PMMCTL0_L |= PMMREGOFF;

 bis_SR_register(LPM4_bits | GIE);

}

voidWakeUpLPM35(void)

{

// Restore Port settings P1OUT = 0x00;

P1DIR = 0xFF;

P2OUT = 0x00;

P2DIR = 0xFF;

P3OUT = 0x00;

P3DIR = 0xFF;

P4OUT = 0x00;

P4DIR = 0xFF;

PJOUT = 0x00;

PJSEL0 |= BIT4 | BIT5;

PJDIR = 0xFFFF;

RTCCTL01 |= RTCBCD | RTCHOLD | RTCTEV MIN | RTCTEVIE;

RTCCTL01 &= ~RTCHOLD;

PM5CTL0 &= ~LOCKLPM5;

CSCTL0_H = CSKEY >>8; // Unlock CS registers

CSCTL1 = DCOFSEL_0; // Set DCO to 1MHz

CSCTL2 = SELA LFXTCLK | SELS DCOCLK | SELM DCOCLK;

// Set ACLK = XT1; MCLK = DCO

CSCTL3 = DIVA 1 | DIVS 1 | DIVM 1; // Set all dividers to 1

CSCTL4 &= ~LFXTOFF; // Enable LFXT1

do

{

CSCTL5 &= ~LFXTOFFG; // Clear XT1 fault flag

SFRIFG1 &= ~OFIFG;

}while (SFRIFG1&OFIFG); // Test oscillator fault flag

CSCTL0_H = 0; }

SVEC, EEE 22

P
ag

e2
2

#if defined(TI_COMPILER_VERSION) || defined(IAR_SYSTEMS_ICC)

#pragma vector=RTC_VECTOR

 interruptvoidRTC_ISR(void)

#elif defined(GNUC)

void attribute ((interrupt(RTC_VECTOR))) RTC_ISR (void)

#else

#error Compiler not supported!

#endif

{

switch (even_in_range(RTCIV, RTCIV_RTCOFIFG)){

case RTCIV_NONE: break;

case RTCIV_RTCRDYIFG: break;

case RTCIV_RTCTEVIFG:

P1OUT |= BIT0; // Turn on LED

break;

case RTCIV_RTCAIFG: break;

case RTCIV_RT0PSIFG: break;

case RTCIV_RT1PSIFG: break;

case RTCIV_RTCOFIFG: break;

}

}

RESULT:

SVEC, EEE 23

P
ag

e2
3

8. PWM GENERATOR

AIM:The main objective of this experiment is to understand how to configure the

PWM module of the MSP-EXP430FR5969 Launchpad to control the brightness of
LED using external input.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

THEORY:

The MSP430F5529 has two LED’s and two push BUTTONS connected to GREEN

LED (P1.0),S2(P1.1) and RED LED (P4.6),S1(P4.5) on the MSP430F5529

LaunchPad for visual feedback. In this experiment, the code programmed into the

MSP430F5529 processor increase the brightness of LED when button is pressed

gradually and decrease the brightness of LED when another button is presses

gradually.Actually here we are increasing and decreasing the width of the pulse by

varying the values in CCR1 of the Timer.

MSP430FR59xx

/|\| XIN|-
| | | 32kHz

--|RST XOUT|-

| |

LED<--| P4.6 P1.0 |--> LED

S1←| P4.5 P1.1 |-->S2

PROCEDURE:

1. Connect the MSP430F5529 LaunchPad to the PC using the USB cable supplied.

2. Build, program and debug the code into the LaunchPad using CCS to view

the status of the LED.

3. In the CCS debug perspective, select View --> Registers

4. Observe the GREEN LED brightness increase whenever S1 is pressed and

decreases when S2 is pressed.

PROGRAM:

#include<msp430.h>

int j=0; intmain(void) {

WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

PM5CTL0 &= ~LOCKLPM5; // Disable the GPIO power-on default high-impedance

//mode to activate previously configured port settings

P1DIR |= BIT0; // Set P1.0 to output direction

SVEC, EEE 24

P
ag

e2
4

P1OUT &= ~BIT0; // Switch LED off

P1DIR &= ~BIT1; // Set P1.1 as input

P1OUT |= BIT1; // Configure P1.1 for Pull-Up

P1REN |= BIT1; // Enable Pull Up of P1.1

P4DIR &= ~BIT5; // Set P4.5 as input

P4OUT |= BIT5; // Configure P4.5 for Pull-Up

P4REN |= BIT5; // Enable Pull Up of P4.5

TA0CCTL1 = OUTMOD_7; // Reset/Set Mode

TA0CTL = TASSEL_2 + MC_1 +TACLR ; // SMCLK / Upmode

TA0CCR0 = 100-1; // PWM Frequency 10 kHz

TA0CCR1 = 50; // 50% Duty Cycle

P1SEL0 |= BIT0; // PWM output to LED P1.0

P1SEL1 &= ~BIT0;

while(1)

{

if(!(P1IN & BIT1))

{

if(TA0CCR1 <= 90)

{

TA0CCR0 = 0;

TA0CCR1 += 10;

TA0CCR0 = 100;

}

}

elseif(!(P4IN & BIT5))

{

if(TA0CCR1 >= 10)

{

TA0CCR0 = 0;

TA0CCR1 -= 10;

TA0CCR0 = 100;

}

}

for(j=100;j>0;j--)

{

 delay_cycles(1000);

}

}

}

RESULT:

SVEC, EEE 25

P
ag

e2
5

9. USE OF COMPARATOR TO COMPARE THE SIGNAL

THRESHOLD LEVEL

AIM: The main objective of this experiment is to understand how to configure

comparator to compare the signal threshold level using MSP-EXP430FR5969

Launchpad

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

THEORY:

PROGRAM:

#include <msp430.h>

int main (void)

{

 WDTCTL = WDTPW + WDTHOLD; // Stop WDT

 P1DIR |= 0x01; // P1.0 output

 CACTL1 = CARSEL + CAREF0 + CAON; // 0.25 Vcc = -comp, on

 CACTL2 = P2CA4; // P1.1/CA1 = +comp

 while (1) // Test comparator_A output

 {

 if ((CAOUT & CACTL2))

 P1OUT |= 0x01; // if CAOUT set, set P1.0

 else P1OUT &= ~0x01; // else reset

 }

}

RESULT

SVEC, EEE 26

P
ag

e2
6

10. SPEED CONTROL OF DC MOTOR

AIM: The main objective of this experiment is to understand how to configure the

PWM module of the MSP-EXP430FR5969 Launchpad to control the brightness of

LED using external input.

APPARATUS:

 1) Code Composer studio software

 2)MSP430F5529 target Launch-pad

 3) USB cable

 4) Patch Chords

THEORY:

A potentiometer is connected to the pin P1.3(A3) and DC MOTOR is

connected to P1.2. Timer operates in UP MODE with Reset/set(output MODE

7) and set the PWM frequency in Capture/Compare register 1(CCR1). Software

sets ADC12SC to start sample and conversion

- ADC12SC automatically cleared at EOC. ADC12 internal oscillator times

sample (16x) and conversion. In Main loop MSP430 waits in LPM0 to save

power until ADC12 conversion complete, ADC12_ISR will force exit from

LPM0 in Mainloop on reti. Values of potentiometer is stored in ADC memory.

The Contents of ADC memory is assigned to Capture/Compare register 0

(CCR0) which sets the duty cycle of the generated pulse. The full, correct

handling of and ADC12 interrupt is shown as well.

SVEC, EEE 27

P
ag

e2
7

ADC12CTL1, ADC12 Control Register 1

PROGRAM:

#include<msp430.h>

intmain(void)

{

WDTCTL = WDTPW | WDTHOLD; // Stop WDT

// GPIO Setup

P1OUT &= ~BIT2; // Clear MOTOR to start

P1DIR |= BIT2; // Set P1.2/MOTOR to output

P1SEL1 = BIT3; // Configure P1.3 for ADC

P1SEL0 = BIT3 | BIT2; // PWM output to MOTOR P1.2

// Disable the GPIO power-on default high-impedance mode to activate

// previously configured port settings

PM5CTL0 &= ~LOCKLPM5;

// Configure TimerA0

TA0CCTL1 = OUTMOD_7; // Reset/Set Mode

TA0CTL = TASSEL_2 + MC_1 +TACLR ; // SMCLK / Upmode

TA0CCR0 = 64-1; // PWM frequency

// Configure ADC12

ADC12CTL0 = ADC12SHT0_2 | ADC12ON; // Sampling time, S&H=16, ADC12

on

ADC12CTL1 = ADC12SHP; // Use sampling timer

ADC12CTL2 |= ADC12RES_2; // 12-bit conversion results

ADC12MCTL0 |= ADC12INCH_3; // A3 ADC input select; Vref=AVCC

ADC12IER0 |= ADC12IE0; // Enable ADC conv complete interrupt

while (1)

{

 delay_cycles(5000);

ADC12CTL0 |= ADC12ENC | ADC12SC; // Start sampling/conversion

SVEC, EEE 28

P
ag

e2
8

 bis_SR_register(LPM0_bits | GIE); // LPM0, ADC12_ISR will force exit

 no_operation(); // For debugger

}

}

#pragma vector = ADC12_VECTOR

 interrupt voidADC12_ISR(void)

{

switch(even_in_range(ADC12IV, ADC12IV_ADC12RDYIFG))

{

case ADC12IV_NONE: break; // Vector 0: No interrupt

case ADC12IV_ADC12OVIFG: break; // Vector 2: ADC12MEMx Overflow

case ADC12IV_ADC12TOVIFG: break; // Vector 4: Conversion time overflow

case ADC12IV_ADC12HIIFG: break; // Vector 6: ADC12BHI case

ADC12IV_ADC12LOIFG: break; // Vector 8:

ADC12BLO case ADC12IV_ADC12INIFG: break; // Vector 10: ADC12BIN

 case ADC12IV_ADC12IFG0:

TA0CCR1 = ADC12MEM0/64; // Vector 12: ADC12MEM0 Interrupt

 bic_SR_register_on_exit(LPM0_bits); // Exit active CPU

break; // Clear CPUOFF bit from 0(SR)

case ADC12IV_ADC12IFG1: break; // Vector 14: ADC12MEM1

case ADC12IV_ADC12IFG2: break; // Vector 16: ADC12MEM2

case ADC12IV_ADC12IFG3: break; // Vector 18: ADC12MEM3

case ADC12IV_ADC12IFG4: break; // Vector 20: ADC12MEM4

case ADC12IV_ADC12IFG5: break; // Vector 22: ADC12MEM5

case ADC12IV_ADC12IFG6: break; // Vector 24: ADC12MEM6

case ADC12IV_ADC12IFG7: break; // Vector 26: ADC12MEM7

case ADC12IV_ADC12IFG8: break; // Vector 28: ADC12MEM8

case ADC12IV_ADC12IFG9: break; // Vector 30: ADC12MEM9

case ADC12IV_ADC12IFG10: break; // Vector 32: ADC12MEM10

case ADC12IV_ADC12IFG11: break; // Vector 34: ADC12MEM11

case ADC12IV_ADC12IFG12: break; // Vector 36: ADC12MEM12

case ADC12IV_ADC12IFG13: break; // Vector 38: ADC12MEM13

case ADC12IV_ADC12IFG14: break; // Vector 40: ADC12MEM14

case ADC12IV_ADC12IFG15: break; // Vector 42: ADC12MEM15

case ADC12IV_ADC12IFG16: break; // Vector 44: ADC12MEM16

case ADC12IV_ADC12IFG17: break; // Vector 46: ADC12MEM17

case ADC12IV_ADC12IFG18: break; // Vector 48: ADC12MEM18

case ADC12IV_ADC12IFG19: break; // Vector 50: ADC12MEM19

case ADC12IV_ADC12IFG20: break; // Vector 52: ADC12MEM20

case ADC12IV_ADC12IFG21: break; // Vector 54: ADC12MEM21

case ADC12IV_ADC12IFG22: break; // Vector 56: ADC12MEM22

case ADC12IV_ADC12IFG23: break; // Vector 58: ADC12MEM23

case ADC12IV_ADC12IFG24: break; // Vector 60: ADC12MEM24

case ADC12IV_ADC12IFG25: break; // Vector 62: ADC12MEM25

SVEC, EEE 29

P
ag

e2
9

case ADC12IV_ADC12IFG26: break; // Vector 64: ADC12MEM26

case ADC12IV_ADC12IFG27: break; // Vector 66: ADC12MEM27

case ADC12IV_ADC12IFG28: break; // Vector 68: ADC12MEM28

case ADC12IV_ADC12IFG29: break; // Vector 70: ADC12MEM29

case ADC12IV_ADC12IFG30: break; // Vector 72: ADC12MEM30

case ADC12IV_ADC12IFG31: break; // Vector 74: ADC12MEM31

case ADC12IV_ADC12RDYIFG: break; // Vector 76: ADC12RDY

default: break;

}

}

RESULT :

SVEC, EEE 30

P
ag

e3
0

11. MASTER SLAVE COMMUNICATION BETWEEN MSPs

USING SPI

AIM: The main objective of this experiment is to establish the SPI master-

slave communication using 3- wire mode in MSP430F5529 Launchpad. This

experiment will help understand the configuration of USCI_A0 SPI 3-Wire

Master Incremented Data in MSP430F5529.

APPARATUS REQUIRED:

● Code composer studio software.

● MSP430FR5529 target Launchpad.

● USB cable.

THEORY

Master:

SVEC, EEE 31

P
ag

e3
1

The program code first disables the watch dog timer to prevent a processor

restart on expiry of the WDT count. The port pin P1.1 is set as slave reset and

port pin P1.0 is configured for the red LED. The port pins P3.3, P3.4 and P2.7

are configured for SPI communication. The USCI logic is held in reset state

and the 3-pin, 8- bit synchronous SPI master is enabled. The SMCLK is

selected as clock source and the USCI logic initiated. The USCI_RX interrupt

is enabled in low power mode and the slave is reset via out- put pin P1.1 and

allowed to initialize. The data values to be transmitted to the slave is also

initial- ized and transmitted via the transmit buffer UCA0TXBUF. On

receiving data from the slave, the USCI_RX interrupt occurs. If the data

received is same as the data transmitted, the red LED is turned on and the data

transmission is continued.

SLAVE

The program code first disables the watch dog timer to prevent a processor

restart on expiry of the WDT count. Since, the connec- tion is synchronous,

the slave receives the clock source from the master on port pin P2.7. If a clock

signal is detected from the master, the port pins P3.3, P3.4 and P2.7 are

configured for SPI communication and the USCI logic is held in reset state.

The 3-pin, 8-bit synchronous SPI master is then enabled. The USCI logic is

initiated and the USCI Rx interrupt is enabled in low power mode 4. When the

slave receives data from the master, the USCI Rx interrupt occurs. The

received data is copied into the transmit buffer UCA0TXBUF for echo

transmission to the master.

PROGRAM

C Program Code for Master and Slave

Master:

#include <msp430.h>

unsigned char MST_Data,SLV_Data; unsigned char temp;

SVEC, EEE 32

P
ag

e3
2

int main(void)

{

volatile unsigned int i;

WDTCTL = WDTPW+WDTHOLD; // Stop watchdog

timer

P1OUT |= 0x02; // Set P1.0 for LED

P1DIR |= 0x03; // Set P1.1 for

slavereset

* P3SEL |= BIT3+BIT4; // P3.3,4 option select

P2SEL |= BIT7; // P2.7 option select

UCA0CTL1 |= UCSWRST; // **Put state machine in reset**

UCA0CTL0 |= UCMST+UCSYNC+UCCKPL+UCMSB; // 3-pin, 8-bit SPI synchronous

master

// Clock polarity high, MSB

UCA0CTL1 |= UCSSEL_2; // SMCLK

UCA0BR0 = 0x02; // /2

UCA0BR1 = 0;

UCA0MCTL = 0; // No modulation

UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt

P1OUT &= ~0x02; // Now with SPI signals

initialized,

P1OUT |= 0x02; // reset slave

for(i=50;i>0;i--); // Wait for slave to

initialize

MST_Data = 0x01; // Initialize data values

SLV_Data = 0x00;

while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready?

UCA0TXBUF = MST_Data; // Transmit first character

 bis_SR_register(LPM0_bits + GIE); // CPU off, enable interrupts

}

#if defined(TI_COMPILER_VERSION) || defined(IAR_SYSTEMS_ICC)

#pragma vector=USCI_A0_VECTOR

 interrupt void USCI_A0_ISR(void)

#elif defined(GNUC)

SVEC, EEE 33

P
ag

e3
3

void attribute ((interrupt(USCI_A0_VECTOR))) USCI_A0_ISR (void)

#else

#error Compiler not supported!

#endif

{

volatile unsigned int i;

switch(even_in_range(UCA0IV,4))

{

case 0: break; // Vector 0 - no interrupt

case 2: // Vector 2 - RXIFG

while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready?

if (UCA0RXBUF==SLV_Data)// Test for correct character RX'd P1OUT |= 0x01; // If

correct, light LED

else

P1OUT &= ~0x01;// If incorrect, clear LED

MST_Data++; // Increment data SLV_Data++;

UCA0TXBUF = MST_Data; // Send next value

for(i = 20; i>0; i--); // Add time between transmissions to

// make sure slave can process

//information

break;

case 4: break; // Vector 4 - TXIFG default: break;

}

}

Slave:

#include <msp430.h>

int main(void)

{

WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer

while(!(P2IN&0x80)); // If clock sig from mstr stays low,

P3SEL |= BIT3+BIT4; // P3.3,4 option select

P2SEL |= BIT7; // P2.7

UCA0CTL1 |= UCSWRST; // **Put state machine in reset**

UCA0CTL0 |= UCSYNC+UCCKPL+UCMSB; // 3-pin, 8-bit SPI slave,

UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**

SVEC, EEE 34

P
ag

e3
4

UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt

 bis_SR_register(LPM4_bits + GIE); // Enter LPM4, enable interrupts

}

#if defined(TI_COMPILER_VERSION) || defined(IAR_SYSTEMS_ICC)

#pragma vector=USCI_A0_VECTOR

 interrupt void USCI_A0_ISR(void)

#elif defined(GNUC)

 void attribute

#else

 ((interrupt(USCI_A0_VECTOR))) USCI_A0_ISR (void)

 #error Compiler not supported!

#endif

{

switch(even_in_range(UCA0IV,4))

{

case 0:break; // Vector 0 - no interrupt

case 2: // Vector 2 - RXIFG

while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready? UCA0TXBUF =

UCA0RXBUF;

break;

case 4:break; // Vector 4 - TXIFG default: break;

}

}

RESULT

SVEC, EEE 35

P
ag

e3
5

12. NETWORKING MSPs USING WI-FI

AIM: The main objective of this experiment is to configure CC3100 Booster

Pack as a Wireless Local Area Network (WLAN) Station to send Email over

SMTP. This experiment will help you understand the WLAN concepts and

CC3100 configuration to send Email over SMTP.

APPARATUS REQUIRED:

Code Composer Studio

CC3100 SDK

Tera Term Software (or any Serial Terminal Software)

MSP430 Launchpad

CC3100 Booster Pack

THEORY

A wireless local area network (WLAN) is a wireless computer network that

connects two or more devices without wires within a confined area, for

example: within a building. This stay connected without physical wiring

constraints and also access Internet. WiFi is based on IEEE 802.11 stan-

dards including IEEE 802.11a and IEEE802.11b.

All nodes that connect over a wireless network are referred to as stations

(STA). Wireless stations can be categorized into Wireless Access Points (AP)

or clients. Access Points (AP) work as the base station for a wireless network.

The Wireless clients could be any device such as computers, laptops, mobile

devices, smart phones, etc.

The Simplelink WIFI CC3100 device is the industry's first Wi-Fi Certified

chip used in the wireless networking solution that simplifies the

implementation of Internet connectivity. This device supports WPA2 personal

and enterprise security and WPS 2.0 and Embedded TCP/IP and TLS/SSL

stacks, HTTP server, and multiple Internet protocols. The functional block

diagram for the CC3100 is shown in Figure.

http://www.ti.com/tool/ccstudio
http://www.ti.com/tool/CC3100SDK
http://www.ti.com/tool/CC3100BOOST

SVEC, EEE 36

P
ag

e3
6

Steps for Creating and Debugging the Project

Install CC3100 SDK.

Open CCS and create a new workspace.

Choose the Import Project link on the TI Resource Explorer page.

Import "email_application" project from CC3100 SDK using the

following steps:

a.Choose the Import Project link on the TI Resource Explorer page.

b.Select the Browse button in the Import CCS Eclipse Projects

dialog.

c.Select the email_application within

 4.Open sl_common.h(line 50 of main.c) and change SSID_NAME,

SEC_TYPE and PASSKEY as per the properties of your Access

Point(AP). SimpleLink device will connect to this AP when the

application is executed.

a.Expand the imported project

b.Click on includes.

c.Click on C:ti/CC3100SDK_1.1.0/cc3100sdk/examples/common

d.Open sl_common.h

#include "simplelink.h"

#include "sl_common.h" << Line 50

5.Replace with SSID of your Access Point.

#define SSID_NAME "XXXXXXXX" /* Security type of the

Access point */

6.Specify Security Type and Password as below if network is

protected with security.

SVEC, EEE 37

P
ag

e3
7

#define SEC_TYPE SL_SEC_TYPE_WPA_WPA2 /*Security

type of the Access point */

7.If network is protected with security, replace passkey with your

network password.

#define PASSKEY "XXXXXXXXXX" /* Password in case of

secure AP */

8.If the Security is open, replace the definitions as below:

#define SEC_TYPE SL_SEC_TYPE_OPEN /*Security type of

the Access point*/

9.If the Network has no password

#define PASSKEY "" /* No password for open type */

10.Open config.h and change values for USER and PASS for

setting up the source email using the following steps:

a. Replace the username of your source email id

#define USER "<username>" Write the password of your email

id #define PASS "<password>"

11.Edit the same config.h file and change the values of

DESTINATION_EMAIL, EMAIL_SUB-

JECT and EMAIL_MESSAGE for setting up the email properties

using the following steps:

a.Replace your destination email id

#define DESTINATION_EMAIL "<destination_email>"

b.Write the subject of your mail

#define EMAIL_SUBJECT "<email_subject>"

c.Write your email message

#define EMAIL_MESSAGE "<email_body>"

 12. Save, Debug and Run

Procedure

1. Connect MSP430F5529 Launchpad and CC3100 BoosterPack as

shown below in Figure.

2. Build, program and debug the code into the LaunchPad using CCS.

Observation

Open Tera Term Terminal Software on the PC where the MSP-EXP430

LaunchPad is connected. The serial port parameters to be set are 9600 baud

rate, 8 bits, No parity and 1 stop bit.The serial window outputs the debug

messages received from the MSP-EXP430 Hardwar.

RESULT

