ACADEMIC REGULATIONS
COURSE STRUCTURE
AND
DETAILED SYLLABI

OF

ELECTRICAL AND ELECTRONICS ENGINEERING
FOR
B.TECH REGULAR FOUR YEAR DEGREE PROGRAM
(For the batches admitted from 2019-2020)
&
FOR B.TECH LATERAL ENTRY PROGRAM
(For the batches admitted from 2020-2021)

CHOICE BASED CREDIT SYSTEM

SREE VIDYANIKETHAN ENGINEERING COLLEGE (AUTONOMOUS)
(Affiliated to JNTUA, Ananthapuramu, Approved by AICTE, Programs Accredited by NBA, Accredited by NAAC with ‘A’ grade)
SREE SAINATH NAGAR, A. Rangampet -517102:: NEAR TIRUPATI (A.P)
VISION

To be one of the Nation’s premier Engineering Colleges by achieving the highest order of excellence in Teaching and Research.

MISSION

➢ To foster intellectual curiosity, pursuit and dissemination of knowledge.
➢ To explore students’ potential through academic freedom and integrity.
➢ To promote technical mastery and nurture skilled professionals to face competition in ever increasing complex world.

QUALITY POLICY

Sree Vidyanikethan Engineering College strives to establish a system of Quality Assurance to continuously address, monitor and evaluate the quality of education offered to students, thus promoting effective teaching processes for the benefit of students and making the College a Centre of Excellence for Engineering and Technological studies.
DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

VISION

To become the Nation’s premiere centre of excellence in electrical engineering through teaching, training, research and innovation to create competent engineering professionals with values and ethics.

MISSION

- Imparting Knowledge through implementing modern curriculum, academic flexibility and learner centric teaching methods in Electrical Engineering.
- Inspiring students for aptitude to research and innovation by exposing them to industry and societal needs to creating solutions for contemporary problems.
- Honing technical and soft skills for enhanced learning outcomes and employability of students with diverse background through comprehensive training methodologies.
- Inculcate values and ethics among students for a holistic engineering professional practice.
PROGRAM EDUCATIONAL OBJECTIVES

After few years of graduation, the graduates of B.Tech. (EEE) Program will be:

1. Enrolled in academic program in the disciplines of electrical engineering, multidisciplinary areas and management studies.
2. Become entrepreneurs or be employed as productive and valued engineers in reputed industries.
3. Engage in lifelong learning, career enhancement and adopt to changing professional and societal needs.

PROGRAM OUTCOMES

On successful completion of the Program, the graduates of B. Tech. (EEE) Program will be able to

1. Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
2. Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
3. Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
4. Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
5. Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
6. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
7. Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
8. Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
9. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

On successful completion of the Program, the graduates of B.Tech. (EEE) Program will be able to:

PSO1: Plan to **conserve and harness** electrical energy using electrical and electronic systems for **sustainability**.

PSO2: Use domain specific **tools** to **analyze, design and develop** electrical and electronic systems for feasible operation and control of Electrical and Electronic Systems.

PSO3: Develop **operating strategies** for utilization of energy and **application** of Electrical and Electronics systems in relevance to industry and society.
For pursuing four year undergraduate Degree Program B.Tech offered by Sree Vidyanikethan Engineering College under Autonomous status and herein after referred to as SVEC:

1. **Applicability:** All the rules specified herein, approved by the Academic Council, shall be in force and applicable to students admitted from the academic year 2019-2020 onwards. Any reference to “College” in these rules and regulations stands for SVEC.

2. **Extent:** All the rules and regulations, specified hereinafter shall be read as a whole for the purpose of interpretation and as and when a doubt arises, the interpretation of the Chairman, Academic Council is final. It shall be ratified by the Academic Council in the forthcoming meeting. As per the requirements of statutory bodies, Principal, Sree Vidyanikethan Engineering College shall be the Chairman, Academic Council.

3. **Admission:**

3.1. **Admission into First Year of Four Year B.Tech. Degree Program in Engineering:**

3.1.1. **Eligibility:** A candidate seeking admission into the First Year of four year B.Tech. Degree Program should have:

Passed either Intermediate Public Examination (I.P.E.) conducted by the Board of Intermediate Education, Andhra Pradesh, with Mathematics, Physics and Chemistry as optional courses (or any equivalent examination recognized by JNTUA, Ananthapuramu) for admission as per the guidelines of Andhra Pradesh State Council of Higher Education (APSCHE).

3.1.2. **Admission Procedure:** Admissions shall be made into the first year of four year B.Tech. Degree Program as per the stipulations of APSCHE, Government of Andhra Pradesh:
(a) By the Convener, EAMCET, (for Category-A Seats).

(b) By the Management (for Category-B Seats).

(c) By the Management (for 15% Supernumerary Quota) for Persons of Indian Origin (PIO)/Foreign Nationals (FN)/ Children of Indian Workers in Gulf Countries/ Overseas Citizen of India (OCI)

3.2. **Admission into the Second Year of Four year B.Tech Degree Program in Engineering (Lateral Entry).**

3.2.1. **Eligibility:** A candidate seeking admission into the Second Year of four year B.Tech. Degree Program (Lateral Entry) should have:

(i) Passed Diploma in Engineering in the relevant branch conducted by the Board of Technical Education, Andhra Pradesh (or equivalent Diploma recognized by JNTUA, Ananthapuramu).

(ii) Candidates qualified in ECET and admitted by the Convener, ECET. In all such cases for admission, when needed, permissions from the statutory bodies are to be obtained.

3.2.2. **Admission Procedure:** 10% of the sanctioned strength in each Program of study as lateral entry students or as stipulated by APSCHE shall be filled in by the Convener, ECET.

4. **Programs of study offered leading to the award of B.Tech. Degree:**

Following are the four year undergraduate Degree Programs of study offered in various branches in SVEC leading to the award of B.Tech (Bachelor of Technology) Degree:

1) B.Tech (Civil Engineering)

2) B.Tech (Computer Science & Engineering)

3) B.Tech (Computer Science & Systems Engineering)

4) B.Tech (Electrical & Electronics Engineering)

5) B.Tech (Electronics & Communication Engineering)

6) B.Tech (Electronics & Instrumentation Engineering)

7) B.Tech (Information Technology)

8) B.Tech (Mechanical Engineering)
5. Duration of the Program:

5.1 Minimum Duration: The program shall extend over a period of four years leading to the Degree of Bachelor of Technology (B.Tech) of the JNTUA, Ananthapuramu. The four academic years shall be divided into eight semesters with two semesters per year. Each semester shall normally consist of 21 weeks (Minimum of 90 working days) having - Continuous Internal Evaluation (CIE) and Semester End Examination (SEE), Choice Based Credit System (CBCS) and Credit Based Semester System(CBSS) as suggested by UGC and Curriculum/ Course Structure as suggested by AICTE are followed. Provision is made for lateral entry admission of students into the Second Year of the program in all the branches of study and they shall be required to satisfy the conditions of admissions thereto prescribed by the JNTUA, Ananthapuramu and Government of Andhra Pradesh.

5.2 Maximum Duration: The student shall complete all the passing requirements of the B.Tech degree program within a maximum duration of 8 years (6 years for lateral entry), these durations reckoned from the commencement of the semester to which the student was first admitted to the program.

6. Structure of the Program:

Each Program of study shall consist of:

(i) HS (Humanities and Social Sciences) Courses
(ii) BS (Basic Sciences) Courses
(iii) ES (Engineering Sciences) Courses
(iv) PC (Professional Core) Courses
(v) PE (Professional Electives)
(vi) OE (Open Electives) Courses
(vii) Mandatory Courses (MC)
(viii) Audit Courses (AC)
(ix) Projects (PR) (Socially Relevant Projects, Internship, Project Work)
Contact Periods:

The contact periods per week are assigned depending on the complexity and volume of the course.

7. Credit Courses:

All Courses are to be registered by a student in a Semester to earn Credits. Credits shall be assigned to each Course in a L: T: P: C (Lecture Hours: Tutorial Hours: Practical Hours: Credits) Structure, based on the following general pattern.

- **Theory Courses:** One Lecture Hour (L) per week in a semester: 01 Credit
- **Practical Courses:** One Practical Hour (P) Per week in a semester: 0.5 Credit
- **Tutorial:** One Tutorial Hour (T) Per week in a semester: 01 Credit
- **Mandatory Courses:** No CREDIT is awarded.
- **Audit Courses:** No CREDIT is awarded.
- **Open Elective** (MOOC): 03 Credits

Student activities like NCC, NSS, Sports, Study Tour and Guest Lecture etc. shall not carry ANY Credits.
For Socially Relevant Projects, Internship and Project Work where formal contact periods are not specified, credits are assigned based on the complexity of the work to be carried out.

The four year curriculum of any B. Tech Program of study shall have a total of 160 credits. However the curriculum for students admitted under lateral entry shall have a total of 118 credits.

8. **Choice Based Credit System (CBCS):**

Choice Based Credit System (CBCS) is introduced in line with UGC guidelines in order to promote:

- Student centred learning
- Students to learn courses of their choice
- Interdisciplinary learning

A Student has a choice of registering for courses comprising program core, professional electives, open electives, MOOC courses, value added / Skill based courses. Besides, choice is also offered to students for registering courses to earn Minor in Engineering/Honors degree.

9. **Course Enrollment and Registration**

9.1 Each student, on admission shall be assigned to a Faculty Advisor (Mentor) who shall advice and counsel the student about the details of the academic program and the choice of courses considering the student's academic background and career objectives.

9.2 Each student on admission shall register for all the courses prescribed in the curriculum in the student's first and second Semesters of study. The student shall enroll for the courses with the help of the student's Faculty Advisor (Mentor). The enrollment for the courses from II B.Tech I Semester to IV B.Tech I Semester shall commence 10 days prior to the last instructional day of the preceding semester for registration process. If the student wishes, the student may drop or add courses (vide clause 8) 10 days prior to commencement of the concerned semester and complete the registration process duly authorized by the Chairman, Board of Studies of concerned department.

9.3 If any student fails to register the courses in a semester, he shall undergo the courses as per the program structure.
9.4 After registering for a course, a student shall attend the classes, satisfy the attendance requirements, earn Continuous Assessment marks and appear for the Semester-end Examinations.

9.5 Elective courses shall be offered by a Department only if a minimum of 40 students register for that course.

10. OPEN ELECTIVE (MOOC)

OPEN ELECTIVE (MOOC) is an online course aimed at unlimited participation and open access via the web.

10.1 A Student is offered an Open Elective (MOOC), in the IV B.Tech I-Semester, and is pursued through Massive Open Online Course (MOOC) platforms. The duration of the MOOC courses shall be for a minimum period of 08 weeks.

10.2 The student shall confirm registration by enrolling the course within 10 days prior to the last instructional day of the III B.Tech II-Semester along with other courses.

10.3 The list of courses along with MOOC service providers shall be identified by the Chairman, BOS, and Head of the Department. The identified Open Elective (MOOC) courses are to be approved by the Chairman, Academic Council.

10.4 The HOD shall appoint one faculty member as mentor (One mentor for each course for with a minimum of 40 students and maximum of 60 students) during the III B.Tech II-Semester for each Open Elective Course registered through MOOC.

10.5 There shall be ONLY semester-end examination for open elective (MOOC) course. It shall be evaluated by the department through ONLINE with 50 multiple choice questions for 100 marks. The department shall prepare the Question Bank for Conducting the ONLINE Open Elective (MOOC) Examination.

11. BREAK OF STUDY FROM A PROGRAM (Gap Year)

11.1 A student is permitted to go on break of study for a maximum period of two years either as two breaks of one year each or a single break of two years.

11.2 In case, a student wishes to extend the gap year for one more consecutive year, he shall be permitted with the prior approval of the Principal on the recommendations of the Head of the Department prior to the beginning of the semester in which he has taken break of study.
11.3 The student shall apply for break of study in advance, in any case, not later than the last date of the first assessment period in a semester. The gap year concept is introduced for start-up (or) incubation of an idea, National/International Internships, and professional Volunteering. The application downloaded from the website and duly filled in by the student shall be submitted to the Principal through the Head of the department. A committee shall be appointed by the Principal in this regard. Based on the recommendations of the committee, Principal shall decide whether to permit the student to avail the gap year or not.

11.4 The students permitted to rejoin the program after break of study shall be governed by the Curriculum and Regulations in force at the time of rejoining.

The students rejoining in new regulations shall apply to the Principal in the prescribed format through Head of the Department, at the beginning of the readmitted semester for registering additional/equivalent courses to comply with the curriculum in-force.

11.5 The two years period of break of study shall not be counted for the maximum Period of graduation (i.e the maximum period of graduation is 10 years for Regular admitted students and 8 years for Lateral Entry admitted students availing Gap Year).

11.6 If a student has not reported to the college after completion of the approved period of break of study he is deemed to be detained in that semester. Such students are eligible for readmission into the semester when offered next.

12. **Examination System:**

12.1 All components in any Program of study shall be evaluated through internal evaluation and / or an external evaluation conducted as Semester-end examination.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course</th>
<th>Marks</th>
<th>Examination and Evaluation</th>
<th>Scheme of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Theory</td>
<td>60</td>
<td>Semester-end examination of 3 hours duration (External evaluation)</td>
<td>The examination question paper in theory courses shall be for a maximum of 60 marks. The question paper shall be of descriptive type with 10 questions each of 12 marks, taken two from each unit. Each unit shall have internal choice and 5 questions shall be answered, one from each unit.</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Course</td>
<td>Marks</td>
<td>Examination and Evaluation</td>
<td>Scheme of examination</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------------</td>
<td>-------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| | | 40 | Mid-term Examination of 2 hours duration (Internal evaluation). | Two mid-term examinations each for 40 marks are to be conducted. For a total of 40 marks, 80% of better one of the two and 20% of the other one are added and finalized.
Mid-I: After first spell of instruction (I & II Units).
Mid-II: After second spell of instruction (III, IV & V Units).
The question paper shall be of descriptive type with 5 essay type questions each of 10 marks, out of which 3 are to be answered and evaluated for 30 marks. There shall also be 5 short answer questions each of 2 marks, all are to be answered and evaluated for 10 marks. |
| 2 | Laboratory | 50 | Semester-end Lab Examination for 3 hours duration (External evaluation) | The examination shall be conducted by the faculty member handling the laboratory (Examiner-2) and another faculty member (Examiner-1) appointed by the Chief Controller of Examinations. |
| | | 30 | Day-to-Day evaluation for Performance in laboratory experiments and Record. | Two laboratory examinations, which includes Day-to-Day evaluation and Practical test, each for 50 marks are to be evaluated by the faculty members handling the laboratory. For a total of 50 marks 80% of better one of the two and 20% of the other one are added and finalized.
Laboratory examination-I: Shall be conducted just before FIRST mid-term examinations.
Laboratory examination-II: Shall be conducted just before SECOND mid-term examinations. |
<p>| | | 20 | Practical test (Internal evaluation). | |
| 3 | Internship | 100 | Semester-end Examination | The evaluation shall be done by the Department Evaluation Committee (DEC) at the end of the semester as given in 12.2.1. |
| 4 | Open Elective (MOOC) | 100 | Semester-end Examination | The evaluation shall be done by the department through ONLINE with 50 multiple choice questions. |
| 5 | Socially Relevant Project | 50 | Internal Evaluation | Shall be evaluated as given in 12.2.2(i) |
| | | 50 | Semester-end evaluation | Viva-Voce examination shall be conducted at the end of the semester as given in 12.2.2(ii) |</p>
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course</th>
<th>Marks</th>
<th>Examination and Evaluation</th>
<th>Scheme of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Mandatory courses</td>
<td>40</td>
<td>Internal Evaluation</td>
<td>Shall be evaluated as given in 12.2.4</td>
</tr>
<tr>
<td>7</td>
<td>Audit Courses</td>
<td>-</td>
<td>-</td>
<td>As detailed in 12.2.5</td>
</tr>
<tr>
<td>8</td>
<td>Project Work</td>
<td>200</td>
<td>Internal evaluation</td>
<td>Continuous evaluation shall be done by the Project Evaluation Committee (PEC) as given in 12.2.3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester-end evaluation</td>
<td>Project Work Viva-Voce Examination shall be conducted by a Committee at the end of the semester as given in 12.2.3.</td>
</tr>
</tbody>
</table>

12.2 Internship/Socially Relevant Project/Project Work/Mandatory Course/Audit Course Evaluation:

12.2.1 Internship:

The student shall undergo Internship in an Industry/National Laboratories/Academic Institutions relevant to the respective branch of study. This course is to be registered during III B.Tech II-Semester and taken up during the summer vacation after completion of the III B.Tech II-Semester, for a period of FOUR weeks duration. The Industry Training/Internship shall be submitted in a Report form, and a presentation of the same shall be made before a Department Evaluation Committee (DEC) and it should be evaluated for 100 marks. The DEC shall consist of the Head of the Department, the concerned Supervisor and a Senior Faculty Member of the Department. The DEC is constituted by the Chief Controller of Examinations on the recommendations of the Head of the Department. There shall be no internal marks for Internship. The Internship shall be evaluated at the end of the IV B.Tech I-Semester.

12.2.2 Socially Relevant Project:

A project for community services shall be carried out in teams (maximum 5 students per team) to solve real life problems of society. The Students shall visit the society (Villages/Hospitals/social service organizations etc.,) to identify the problem, conduct literature survey and provide a feasible solution. Each team shall work under the supervision of a guide (faculty member).

(i) **Internal Evaluation:** Two internal evaluations (First evaluation before the I-Mid-term examinations and second evaluation before the II-Mid-term
examinations) shall be conducted by the guide and a faculty member nominated by the HOD. For a total of 50 marks, 80% of better one of the two and 20% of the other one are added and finalized.

(ii) **Semester-end Evaluation:** A report on socially relevant project shall be submitted by the team of students to the department at the end of the semester. The Viva-Voce examination shall be conducted by the concerned guide and a senior faculty member recommended by the Head of the Department and appointed by the Chief Controller of Examinations.

12.2.3 Project Work:

(i) **Internal Evaluation:** The Internal Evaluation shall be made by the Project Evaluation Committee (PEC) consisting of concerned supervisor and two senior faculty members, on the basis of TWO project reviews on the topic of the project. Each review shall be conducted for a maximum of "100" marks. For a total of 100 marks, 80% of better one of the two and 20% of the other one are added and finalized. The PEC is constituted by the Principal on the recommendations of the Head of the Department.

(ii) **Semester-end Evaluation:** The Semester-end Project Work Viva-Voce Examination shall be conducted by a Committee consisting of External examiner (nominated by the Chief Controller of Examinations), HOD and concerned Supervisor. The evaluation of project work shall be done at the end of the IV B.Tech II Semester.

Three copies of the dissertation certified in the prescribed format by the concerned Supervisor and HOD shall be submitted to the Department. One copy is to be submitted to the Chief Controller of Examinations. The examiner shall be nominated by the Chief Controller of the Examinations from the panel of SIX examiners submitted by the Department.

12.2.4 Mandatory Courses:

Mandatory courses carry "ZERO" credits. There shall be NO Semester-end examination. However, ATTENDANCE in Mandatory courses shall be considered while calculating aggregate attendance in a semester. The internal examination shall be conducted and evaluated similar to the THEORY courses. The student shall be declared to have passed the mandatory courses only when HE secures **40% marks in the internal examination.** If the student FAILS, a re-examination shall be conducted for FAILED candidates in the CONSEQUETIVE
semester. The performance of the student shall be indicated in the grade sheets "SATISFACTORY" (or) "NOT SATISFACTORY" as given in 17.1. The student should pass all the mandatory courses, for the award of B.Tech degree.

12.2.5 Audit Courses:

Audit courses carry "ZERO" credits. There shall be NO Internal and Semester-end examination. However, ATTENDANCE in Audit courses shall be considered while calculating aggregate attendance in a semester. The student should study all the audit courses, and it shall be indicated in the GRADE Sheet.

12.3. Eligibility to appear for the Semester-End Examination (SEE):

12.3.1 A student shall be eligible to appear for semester-end examinations if he acquires a minimum of 75% of attendance in aggregate of all the courses in a semester.

12.3.2 Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee.

12.3.3 Shortage of Attendance below 65% in aggregate shall in no case be condoned.

12.3.4 Students whose shortage of attendance is not condoned in any semester are not eligible to take their semester-end examinations of that class and their registration shall stand cancelled.

12.3.5 A student shall not be promoted to the next semester unless he satisfies the attendance requirements of the current semester, as applicable. The student may seek readmission for the semester when offered next. He shall not be allowed to register for the courses of the semester while he is in detention. A student detained due to shortage of attendance, shall have to repeat that semester when offered next.

12.3.6 A stipulated fee shall be payable to the College towards Condonation of shortage of attendance.

12.3.7 The attendance in Student Development Activities shall be considered for finalization of aggregate attendance.

12.3.8 For the calculation of a student attendance in any semester, the total number of classes conducted shall be counted as scheduled in the class-work time table.
12.4. **Evaluation:**

Following procedure governs the evaluation.

12.4.1. Marks for components evaluated internally by the faculty shall be submitted to the Controller of Examinations one week before the commencement of the Semester-end examinations. The marks for the internal evaluation components shall be added to the external evaluation marks secured in the Semester-end examinations, to arrive at the total marks for any course in that semester.

12.4.2. Performance in all the courses is tabulated course-wise and shall be scrutinized by the Results Committee and moderation is applied if needed and course-wise marks are finalized. Total marks obtained in each course are converted into letter grades.

12.4.3. Student-wise tabulation shall be done and individual grade Sheet shall be generated and issued to the student.

12.5. **Personal verification / Revaluation / Recounting:**

Students shall be permitted for personal verification/request for recounting/revaluation of the Semester-end examination answer scripts within a stipulated period after payment of prescribed fee. After recounting or revaluation, records are updated with changes if any and the student shall be issued a revised grade sheet. If there are no changes, the student shall be intimated the same through a notice.

12.6. **Supplementary Examination:**

In addition to the regular semester-end examinations conducted, the College may also schedule and conduct supplementary examinations for all the courses of other semesters when feasible for the benefit of students. Such of the candidates writing supplementary examinations may have to write more than one examination per day.

13. **Academic Requirements for promotion/ completion of regular B.Tech Program of study:**

The following academic requirements have to be satisfied in addition to the attendance requirements for promotion/completion of regular B.Tech Program of study.
For students admitted into B.Tech. (Regular) Program:

13.1 A student shall be deemed to have satisfied the minimum academic requirements for each theory course, laboratory course, socially relevant project and project work, if he secures not less than 40% of marks in the Semester-end examination and a minimum of 40% of marks in the sum total of the internal evaluation and Semester-end examination taken together. For the courses “Internship” and “Open Elective (MOOC)”, he should secure not less than 40% of marks in the semester-end examination.

13.2 A student shall be promoted from second year to third year of Program of study only if he fulfills the academic requirement of securing 40% of credits (rounded off to lower integer number) from the following examinations (Irrespective of whether or not the candidate appears for the semester-end examinations as per the normal course of study):

a. One regular and two supplementary examinations of I B.Tech I Semester.

b. One regular and one supplementary examinations of I B.Tech II Semester.

c. One regular examination of II B.Tech I Semester.

13.3 A student shall be promoted from third year to fourth year of Program of study only if he fulfills the academic requirements of securing 40% of credits (rounded off to lower integer number) from the following examinations (Irrespective of whether or not the candidate appears for the semester-end examinations as per the normal course of study):

a. One regular and four supplementary examinations of I B.Tech I Semester.

b. One regular and three supplementary examinations of I B.Tech II Semester.

c. One regular and two supplementary examinations of II B.Tech I Semester.

d. One regular and one supplementary examinations of II B.Tech II Semester.

e. One regular examination of III B.Tech I Semester.

* In case of getting detained for want of credits by sections 13.2 and 13.3 above, the student may make up the credits through supplementary examinations.

13.4 A student shall register for all the 160 credits and earn all the 160 credits. Marks obtained in all the 160 credits shall be considered for the calculation of the DIVISION based on CGPA.
13.5 A student who fails to earn 160 credits as indicated in the course structure within eight academic years from the year of their admission shall forfeit his seat in B.Tech. Program and his admission stands cancelled.

For Lateral Entry Students (batches admitted from the academic year 2020-2021):

13.6 A student shall be deemed to have satisfied the minimum academic requirements for each theory, practical course, Socially relevant project and Project Work, if he secures not less than 40% of marks in the semester-end examination and a minimum of 40% of marks in the sum total of the internal evaluation and semester-end examination taken together. For the courses “Internship” and “Open Elective (MOOC)”, he shall be declared to have passed if he secures minimum of 40% of marks in the semester-end examination.

13.7 A student shall be promoted from third year to fourth year only if he fulfills the academic requirements of securing 40% of credits (rounded off to lower integer number) from the following examinations:

a. **One** regular and **Two** supplementary examinations of II B.Tech I Semester.

b. **One** regular and **One** supplementary examinations of II B.Tech II Semester.

c. **One** regular examination of III B.Tech I Semester.

Irrespective of whether or not the candidate appears for the semester-end examination as per the normal course of study and in case of getting detained for want of credits the student may make up the credits through supplementary examinations.

13.8 A student shall register for all 118 credits and earn all the 118 credits. Marks obtained in all the 118 credits shall be considered for the calculation of the **DIVISION** based on CGPA.

13.9 A student who fails to earn 118 credits as indicated in the course structure within six academic years from the year of their admission shall forfeit his seat in B.Tech Program and his admission stands cancelled.

14. **Minor degree in a discipline:**

The concept of Minor degree is introduced in the curriculum of all B. Tech. programs offering a Major degree. The main objective of Minor degree in a discipline is to provide additional learning opportunities for academically
motivated students and it is an optional feature of the B.Tech Program. In order to earn a Minor degree in a discipline, a student has to earn 20 extra credits (By studying SIX theory and TWO laboratory courses) from the core courses of the minor discipline.

a. Students having a CGPA of 8.0 or above up to II B.Tech I-Semester without any backlogs shall be permitted to register for Minor degree.

b. An SGPA and CGPA of 7.5 has to be maintained in the subsequent semesters without any backlog subjects in order to keep the Minor discipline registration live or else it shall be cancelled.

c. Students aspiring for a Minor degree must register from III B.Tech I-Semester onwards and must opt for a Minor in a discipline other than the discipline he is registered in.

d. A Student shall register for a maximum of SEVEN credits in a semester starting from III B.Tech I-Semester to IV B.Tech I-Semester (Either TWO theory and ONE laboratory course (or) TWO theory courses).

e. The Evaluation pattern of the courses shall be similar to the regular program courses evaluation.

f. Minimum strength required for offering a Minor in a discipline is considered as 20% of the class size and Maximum should be 80% of the class size.

g. Minor degree program should be completed by the end of IV B. Tech II-Semester along with the Major discipline.

h. A student registered for Minor degree shall pass in all subjects that constitute the requirement for the Minor degree program. No class/division (i.e., second class, first class and distinction, etc.) shall be awarded for Minor degree program.

i. The Minor degree shall be mentioned in the degree certificate as Bachelor of Technology in XXX with Minor in YYY. For example, Bachelor of Technology in Computer Science & Engineering with Minor in Electronics & Communication Engineering. This shall also be reflected in the transcripts, along with the list of courses taken for Minor degree program with CGPA mentioned separately.

j. Separate course/class work and time table shall be arranged for the various Minor degree programs. Attendance regulations for these Minor discipline programs shall be as per regular courses.

NOTE: Interested meritorious students shall be permitted to register either for Minor degree in a discipline (or) Honours Degree in a discipline only, but not both.
15. **Honours degree in a discipline:**

a. Students having a CGPA of 8.0 and above up to II B.Tech I-Semester without any backlogs shall be permitted to register for Degree with Honours.

b. The concept of **Honours degree** is introduced in the curriculum for all B. Tech. programs. The main objective of Honours degree in a discipline is to provide additional learning opportunities for academically motivated students and it is an optional feature of the B. Tech. program. In order to earn Honours degree in a discipline, a student has to earn 20 extra credits by studying FIVE advanced courses for 15 credits (by choosing not more than TWO courses in a semester starting from III B.Tech. I Semester) and by carrying out a **mini project** for 5 credits in the concerned branch of Engineering. The Evaluation pattern of theory courses shall be similar to the regular program courses evaluation. Students aspiring for Honours degree must register from III B.Tech I-Semester semester onwards. Students may register for mini project from III B.Tech II-Semester onwards and complete the same by the end of IV B. Tech I-Semester.

c. **Procedure for Conduct and Evaluation of Honours degree Mini project:**

Out of a total of 100 marks for the **Mini project**, 50 marks shall be for Internal Evaluation and 50 marks for the Semester-end Examination (Viva-voce). The Internal Evaluation shall be made by the Project Evaluation Committee (PEC) consisting of concerned supervisor and two senior faculty members, on the basis of TWO project reviews on the topic of the mini project. Each review shall be conducted for a maximum of "50" marks. The final internal marks shall be taken as the SUM of marks obtained in the two reviews. The **PEC** is constituted by the Principal on the recommendations of the Head of the Department. The Semester-end examination (Viva-Voce) shall be conducted by a Committee consisting of External examiner (nominated by the Chief Controller of Examinations), HOD and concerned Supervisor. The evaluation of mini project work shall be done at the end of the IV B.Tech I- Semester.

NOTE: Interested meritorious students shall be permitted to register either for **Minor degree in a discipline** (or) **Honours Degree in a discipline only**, but **not both**.

16. **Transitory Regulations:**

Students who got detained for want of attendance (or) who have not fulfilled academic requirements (or) who have failed after having undergone the Program
in earlier regulations (or) who have discontinued and wish to continue the Program are eligible for admission into the unfinished semester from the date of commencement of class work with the same (or) equivalent courses as and when courses are offered and they shall be in the academic regulations into which they are presently readmitted.

A regular student has to satisfy all the eligibility requirements within the maximum stipulated period of eight years and a lateral entry student within six years for the award of B.Tech Degree.

17. Grades, Semester Grade Point Average and Cumulative Grade Point Average:

17.1. Grade System: After all the components and sub-components of any course (including laboratory courses) are evaluated, the final total marks obtained shall be converted into letter grades on a "10 point scale" as described below.

<table>
<thead>
<tr>
<th>% of Marks obtained</th>
<th>Grade</th>
<th>Description of Grade</th>
<th>Grade Points (GP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>> = 95</td>
<td>O</td>
<td>Outstanding</td>
<td>10</td>
</tr>
<tr>
<td>> = 85 to < 95</td>
<td>S</td>
<td>Superior</td>
<td>9</td>
</tr>
<tr>
<td>> = 75 to < 85</td>
<td>A</td>
<td>Excellent</td>
<td>8</td>
</tr>
<tr>
<td>> = 65 to < 75</td>
<td>B</td>
<td>Very Good</td>
<td>7</td>
</tr>
<tr>
<td>> = 55 to < 65</td>
<td>C</td>
<td>Good</td>
<td>6</td>
</tr>
<tr>
<td>> = 45 to < 55</td>
<td>D</td>
<td>Fair</td>
<td>5</td>
</tr>
<tr>
<td>> = 40 to < 45</td>
<td>E</td>
<td>Pass</td>
<td>4</td>
</tr>
<tr>
<td>< 40</td>
<td>F</td>
<td>Fail</td>
<td>0</td>
</tr>
<tr>
<td>Not Appeared</td>
<td>N</td>
<td>Absent</td>
<td>0</td>
</tr>
</tbody>
</table>

For Mandatory Courses

<table>
<thead>
<tr>
<th>% of Marks obtained</th>
<th>Grade</th>
<th>Description of Grade</th>
<th>Grade Points (GP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>=40</td>
<td>P</td>
<td>Satisfactory</td>
<td>-</td>
</tr>
<tr>
<td><40</td>
<td>I</td>
<td>Not Satisfactory</td>
<td>-</td>
</tr>
</tbody>
</table>

Pass Marks:

A student shall be declared to have passed theory course, laboratory course, Socially relevant project and project work if he secures minimum of 40% marks in external examination, and a minimum of 40% marks in the sum total of internal evaluation and external examination taken together. For Industrial training/internship he shall be declared to have passed if he secures minimum of
40% of marks in the semester-end examination. Otherwise, he shall be awarded fail grade - 'F' in such a course irrespective of internal marks. 'F' is considered as a fail grade indicating that the student has to pass the Semester-End Examination in that course in future and obtain a grade other than 'F' and 'N' for passing the course.

For the Mandatory Courses, if the student obtained 40% or more marks, then his performance shall be indicated as “P” (SATISFACTORY), otherwise the performance shall be indicated as “I” (NOT SATISFACTORY) in the grade sheet.

17.2. Semester Grade Point Average (SGPA): SGPA shall be calculated as given below on a "10 point scale" as an index of the student's performance:

\[SGPA = \frac{\sum (C \times GP)}{\sum C} \]

Where "C" denotes the "credits" assigned to the courses undertaken in that semester and "GP" denotes the "grade points" earned by the student in the respective courses.

Note: SGPA is calculated only for the candidates who appeared in the semester-end regular examinations in a particular semester:

17.3. Cumulative Grade Point Average (CGPA):

The CGPA shall be calculated for a candidate appeared in the Semester-end examinations for all the courses (including Regular & Supplementary) till that semester. The CGPA shall be displayed in the Grade sheet of the Regular Semester-end examinations and also in the consolidated Grade Sheet issued at the end of the program. The CGPA is computed on a 10 point scale as given below:

\[CGPA = \frac{\sum (C \times GP)}{\sum C} \]

where C denotes the credits assigned to courses undertaken up to the end of the Program and GP denotes the grade points earned by the student in the respective courses.
18. **Grade Sheet**: A grade sheet (Marks Memorandum) shall be issued to each student on his performance in all the courses registered in that semester indicating the SGPA and CGPA.

19. **Consolidated Grade Sheet**: After successful completion of the entire Program of study, a Consolidated Grade Sheet indicating performance of all academic years shall be issued as a final record. Duplicate Consolidated Grade Sheet shall also be issued, if required, after payment of requisite fee.

20. **Award of Degree**: The Degree shall be conferred and awarded by Jawaharlal Nehru Technological University Anantapur, Ananthapuramu on the recommendations of the Chairman, Academic Council, SVEC (Autonomous).

20.1. **Eligibility**: A student shall be eligible for the award of B.Tech Degree if he fulfills all the following conditions:

- Registered and successfully completed all the components prescribed in the Program of study to which he is admitted.
- Successfully acquired the minimum required credits as specified in the curriculum corresponding to the branch of study within the stipulated time.
- Obtained CGPA greater than or equal to 4.0 (Minimum requirement for declaring as passed).
- Has NO DUES to the College, Hostel, Library etc. and to any other amenities provided by the College.
- No disciplinary action is pending against him.

20.2. **Award of Division**: Declaration of Division is based on CGPA.

<table>
<thead>
<tr>
<th>CGPA</th>
<th>Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>>= 7.0</td>
<td>First Class with Distinction</td>
</tr>
<tr>
<td>>= 6.0 and < 7.0</td>
<td>First Class</td>
</tr>
<tr>
<td>>= 5.0 and < 6.0</td>
<td>Second Class</td>
</tr>
<tr>
<td>>= 4.0 and < 5.0</td>
<td>Pass Class</td>
</tr>
</tbody>
</table>

21. **Additional Academic Regulations**:

21.1 A student may appear for any number of supplementary examinations within the stipulated time to fulfill regulatory requirements for award of the degree.
21.2 In case of malpractice/improper conduct during the examinations, guidelines shall be followed as given in the ANNEXURE-I.

21.3 When a student is absent for any examination (Mid-term or Semester-end) he shall be awarded zero marks in that component (course) and grading shall be done accordingly.

21.4 When a component is cancelled as a penalty, he shall be awarded zero marks in that component.

22. Withholding of Results:

If the candidate has not paid dues to the College/University (or) if any case of indiscipline is pending against him, the result of the candidate shall be withheld and he shall not be allowed/promoted to the next higher semester.

23. Amendments to Regulations:

The Academic Council of SVEC (Autonomous) reserves the right to revise, amend, or change the Regulations, Scheme of Examinations, and / or Syllabi or any other policy relevant to the needs of the society or industrial requirements etc., with the recommendations of the concerned Board(s) of Studies.

24. General:

The words such as "he", "him", "his" and "himself" shall be understood to include all students irrespective of gender connotation.

Note: Failure to read and understand the regulations is not an excuse.
ANNEXURE-I
GUIDELINES FOR DISCIPLINARY ACTION FOR MALPRACTICES/IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>Rule No.</th>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the candidate:</td>
<td>Expulsion from the examination hall and cancellation of the performance in that course only.</td>
<td></td>
</tr>
<tr>
<td>1. (a)</td>
<td>Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the course of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the course of the examination)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expulsion from the examination hall and cancellation of the performance in that course only.</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that course only of all the candidates involved. In case of an outsider, he shall be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2.</td>
<td>Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the course of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that course and all other courses the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the courses of that Semester. The Hall Ticket of the candidate is to be cancelled.</td>
</tr>
<tr>
<td>3.</td>
<td>Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred for four consecutive semesters from class work and all Semester-end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the courses of the examination (including labs and project work) already appeared and shall not be allowed to appear for examinations of the remaining courses of that semester. The candidate is also debarred for four consecutive semesters from class work and all Semester-end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he shall be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>4.</td>
<td>Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.</td>
<td>Expulsion from the examination hall and cancellation of performance in that course and all the other courses the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining</td>
</tr>
</tbody>
</table>

26
<table>
<thead>
<tr>
<th>Rule No.</th>
<th>Nature of Malpractices/ Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>examinations of the courses of that semester. The candidate is also debarred for two consecutive semesters from class work and all Semester-end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.</td>
<td>Cancellation of the performance in that course only.</td>
</tr>
<tr>
<td>6.</td>
<td>Refuses to obey the orders of the Chief Controller of Examinations/Controller of Examinations/ Invigilator/ any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the Controller of Examinations or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the Controller of Examinations, or any person on duty in or outside the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.</td>
<td>In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that course and all other courses the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the courses of that semester. If the candidate physically assaults the invigilator/Controller of the Examinations, then the candidate is also debarred and forfeits his/her seat. In case of outsiders, they shall be handed over to the police and a police case is registered against them.</td>
</tr>
<tr>
<td>7.</td>
<td>Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of performance in that course and all the other courses the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the courses of that semester. The candidate is also debarred for two consecutive semesters from class work and all Semester-end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
</tr>
<tr>
<td>8.</td>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that course and all other courses the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the courses of that semester. The candidate is also debarred and forfeits the seat.</td>
</tr>
</tbody>
</table>

Note: Whenever the performance of a student is cancelled in any course(s) due to Malpractice, he has to register for Semester-end Examinations in that course(s) consequently and has to fulfill all the norms required for the award of Degree.
SVEC-19 CURRICULUM

Course Structure for B.Tech Program
(Effective from the Academic year 2019-20 onwards)

ELECTRICAL AND ELECTRONICS ENGINEERING

<table>
<thead>
<tr>
<th>Mandatory Induction Program</th>
<th>03 weeks duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induction program offered before commencement of the I-Semester course work</td>
<td>Physical activity</td>
</tr>
<tr>
<td></td>
<td>Creative Arts</td>
</tr>
<tr>
<td></td>
<td>Universal Human Values</td>
</tr>
<tr>
<td></td>
<td>Literary</td>
</tr>
<tr>
<td></td>
<td>Proficiency Modules</td>
</tr>
<tr>
<td></td>
<td>Lectures by Eminent People</td>
</tr>
<tr>
<td></td>
<td>Visits to local Areas</td>
</tr>
<tr>
<td></td>
<td>Familiarization to Department/Branch and Innovations</td>
</tr>
</tbody>
</table>
COURSE STRUCTURE

ELECTRICAL AND ELECTRONICS ENGINEERING

I B.Tech. – I Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact Periods per week</th>
<th>C</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>19BT1BS01</td>
<td>Differential Equations and Multivariable Calculus</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>19BT1BS02</td>
<td>Biology for Engineers</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>19BT1BS03</td>
<td>Engineering Physics</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>19BT10341</td>
<td>Basic Civil and Mechanical Engineering</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>19BT10201</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>19BT1BS31</td>
<td>Engineering Physics Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>19BT10231</td>
<td>Basic Electrical and Electronics Engineering Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>19BT20331</td>
<td>Engineering Workshop</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact Periods per week</th>
<th>C</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.</td>
<td>19BT1AC01</td>
<td>Spoken English</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Course Code</td>
<td>Course Title</td>
<td>Contact Periods per week</td>
<td>C</td>
<td>Scheme of Examination Max. Marks</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>--</td>
<td>--------------------------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>19BT2BS01</td>
<td>Transformation Techniques and Linear Algebra</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>19BT1BS04</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>19BT1HS01</td>
<td>Communicative English</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td>19BT10501</td>
<td>Programming for Problem Solving</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>19BT20201</td>
<td>Electric Circuits</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>19BT1BS32</td>
<td>Engineering Chemistry Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>19BT1HS31</td>
<td>Communicative English Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>19BT10331</td>
<td>Computer Aided Engineering Drawing</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>19BT10531</td>
<td>Programming for Problem Solving Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>19BT20231</td>
<td>Electric Circuits Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>
II B.Tech. – I Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact Periods per week</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1.</td>
<td>19BT3BS02</td>
<td>Special Functions and Complex Analysis</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>19BT30402</td>
<td>Electronic Devices and Circuits</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>19BT30201</td>
<td>Electrical Machines-1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>19BT30202</td>
<td>Electromagnetic Fields</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>19BT30203</td>
<td>Signals and Networks</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>19BT3HS31</td>
<td>Soft Skills Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>19BT41231</td>
<td>AI Tools Lab</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>8.</td>
<td>19BT30432</td>
<td>Electronic Devices and Circuits Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>19BT30231</td>
<td>Electrical Machines-1 Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>19BT30232</td>
<td>Signals and Networks Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total:</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>11.</td>
<td>19BT3MC02</td>
<td>Environmental Science</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Total: 15 3 10 28 23 450 550 1000
II B.Tech. – II Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact Periods per week</th>
<th>C</th>
<th>Scheme of Examination</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>Total</td>
</tr>
<tr>
<td>1.</td>
<td>19BT31501</td>
<td>Design Thinking</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>19BT40201</td>
<td>Electrical Machines-2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>19BT40202</td>
<td>Electrical Measurements</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>19BT40203</td>
<td>Switching Theory and Logic Design</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>19BT40204</td>
<td>Transmission and Distribution</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>Open Elective-1</td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>19BT31531</td>
<td>Design Thinking Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>19BT40231</td>
<td>Electrical Engineering Workshop</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>19BT40232</td>
<td>Electrical Machines-2 Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>19BT40233</td>
<td>Switching Theory and Logic Design Lab</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>17</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>11.</td>
<td>19BT3MC01</td>
<td>Constitution of India</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Total 1000 marks.
<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact Periods per week</th>
<th>Scheme of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1.</td>
<td>19BT50442</td>
<td>Electronic Circuit Analysis</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>19BT50201</td>
<td>Control Systems</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>19BT50202</td>
<td>Switchgear and Protection</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective–1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT50203</td>
<td>Digital Signal Processing for Electrical Engineering</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT50204</td>
<td>Energy Audit, Conservation and Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT50205</td>
<td>Generation of Electric Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT50206</td>
<td>Instrumentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT50207</td>
<td>Special Electrical Machines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Open Elective-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>Open Elective-3 (Inter Disciplinary Elective-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT30501</td>
<td>Computer Organization and Architecture</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT51041</td>
<td>PLC and SCADA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT51042</td>
<td>Sensors and Signal Conditioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT50443</td>
<td>Principles of Communications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>19BT50451</td>
<td>Electronic Circuit Analysis Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>19BT61532</td>
<td>Internet of Things Lab</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>9.</td>
<td>19BT50231</td>
<td>Socially Relevant Project-1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>10.</td>
<td>19BT5MC01</td>
<td>Indian Tradition and Culture</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
III B.Tech. – II Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact Periods per week</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1.</td>
<td>19BT6HS01</td>
<td>Principles of Business Economics and Accountancy</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>19BT60201</td>
<td>Power Electronics</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>19BT60202</td>
<td>Power System Analysis</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>19BT60441</td>
<td>Digital IC Applications</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>19BT60203</td>
<td>Electrical Machine Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>19BT60204</td>
<td>Power Quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT60205</td>
<td>High Voltage Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT60206</td>
<td>Nonlinear Control Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professional Elective-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>19BT50403</td>
<td>VLSI Design</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>19BT60207</td>
<td>Analysis of Power Electronic Converters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>19BT60208</td>
<td>Distributed Generation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT60209</td>
<td>Electromagnetic Field Computation and Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT60210</td>
<td>Soft Computing Techniques</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open Elective-4 (Inter Disciplinary Elective-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>19BT60319</td>
<td>Mechatronics</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>19BT60410</td>
<td>Embedded Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>19BT60412</td>
<td>Sensors and Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>19BT61003</td>
<td>Industrial Data Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT60231</td>
<td>Power Electronics Lab</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10.</td>
<td>19BT6AC01</td>
<td>Numerical Methods</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Total: 18 L 4 T 22 P 21 Total 390 Int. Marks 510 Ext. Marks 900 Total Marks
IV B.Tech. – I Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact Periods per week</th>
<th>C</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>19BT6HS02</td>
<td>Organizational Behavior</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>19BT70201</td>
<td>Design and Estimation of Electrical Systems</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>19BT70202</td>
<td>Power System Operation and Control</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td>Professional Elective–4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT70203</td>
<td>PIC Microcontrollers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT70204</td>
<td>HVDC Transmission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT70205</td>
<td>Solid State Drives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT70206</td>
<td>Switched Mode Power Supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT70207</td>
<td>Smart Grid Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td>Professional Elective–5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT6406</td>
<td>Image Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT70208</td>
<td>Flexible AC Transmission systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT70209</td>
<td>Electric Vehicles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT70210</td>
<td>Power Electronics for Renewable Energy Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT70211</td>
<td>Power System Automation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>19BT7006</td>
<td>Open Elective–5 (MOOC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>19BT70231</td>
<td>Electrical CAD Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>19BT70232</td>
<td>Power Systems–2 Lab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>19BT70233</td>
<td>Internship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>14</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

| 10. | 19BT70AC06 | Probability and Statistics | 2 | - | - | 2 | - | - | - | - | - |
IV B.Tech. - II Semester

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Contact Periods per week</th>
<th>C</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>19BT80231</td>
<td>Project Work</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

LIST OF COURSES FOR OPEN ELECTIVE-1 & OPEN ELECTIVE-2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Open Elective -1</th>
<th>Course Code</th>
<th>Open Elective -2</th>
</tr>
</thead>
<tbody>
<tr>
<td>19BT4BS01</td>
<td>Material Science</td>
<td>19BT4HS01</td>
<td>Banking and Insurance</td>
</tr>
<tr>
<td>19BT4HS02</td>
<td>Business Communication and Career Skills</td>
<td>19BT4HS03</td>
<td>Cost Accountancy and Financial Management</td>
</tr>
<tr>
<td>19BT4HS04</td>
<td>Entrepreneurship for Micro, Small and Medium Enterprises</td>
<td>19BT4HS05</td>
<td>Gender and Environment</td>
</tr>
<tr>
<td>19BT4HS06</td>
<td>German Language</td>
<td>19BT4HS07</td>
<td>Indian Economy</td>
</tr>
<tr>
<td>19BT4HS08</td>
<td>Indian History</td>
<td>19BT4HS09</td>
<td>Life Skills</td>
</tr>
<tr>
<td>19BT4HS10</td>
<td>Personality Development</td>
<td>19BT4HS11</td>
<td>Professional Ethics</td>
</tr>
<tr>
<td>19BT4HS12</td>
<td>Women Empowerment</td>
<td>19BT40105</td>
<td>Disaster Mitigation and Management</td>
</tr>
<tr>
<td>19BT50105</td>
<td>Environmental Pollution and Control</td>
<td>19BT40106</td>
<td>Sustainable Engineering</td>
</tr>
<tr>
<td>19BT50106</td>
<td>Planning for Sustainable Development</td>
<td>19BT40107</td>
<td>Contract Laws and Regulations</td>
</tr>
<tr>
<td>19BT50107</td>
<td>Rural Technology</td>
<td>19BT50208</td>
<td>Intellectual Property Rights</td>
</tr>
<tr>
<td>19BT40205</td>
<td>Energy Management and Conservation</td>
<td>19BT40305</td>
<td>Global Strategy and Technology</td>
</tr>
<tr>
<td>19BT50504</td>
<td>Ethical Hacking</td>
<td>19BT40306</td>
<td>Management Science</td>
</tr>
<tr>
<td>19BT51207</td>
<td>ICT in Healthcare</td>
<td>19BT50408</td>
<td>Green Technologies</td>
</tr>
<tr>
<td>19BT51505</td>
<td>Bioinformatics</td>
<td>19BT40505</td>
<td>Cyber Laws and Security</td>
</tr>
</tbody>
</table>
MINOR DEGREE IN A DISCIPLINE

Courses for Minor Degree in Electrical and Electronics Engineering

<table>
<thead>
<tr>
<th>Semester</th>
<th>COURSE CODE</th>
<th>Course Title</th>
<th>Contact Periods per week</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Total</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>III B.Tech I-Sem</td>
<td>19BT20201</td>
<td>Electric Circuits</td>
<td>3 1 -</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT30402</td>
<td>Electronic Devices and Circuits</td>
<td>3 - -</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>III B.Tech II-Sem</td>
<td>19BT50205</td>
<td>Generation of Electric Power</td>
<td>3 - -</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT50442</td>
<td>Electronic Circuit Analysis</td>
<td>3 - -</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT50451</td>
<td>Electronic Circuit Analysis Lab</td>
<td>- - 2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IV B.Tech I-Sem</td>
<td>19BT40202</td>
<td>Electrical Measurements</td>
<td>3 - -</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT50207</td>
<td>Special Electrical Machines</td>
<td>3 - -</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19BT40231</td>
<td>Electrical Engineering Workshop</td>
<td>- - 2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOTAL</td>
<td>21</td>
</tr>
</tbody>
</table>

HONORS DEGREE IN A DISCIPLINE

Advanced Courses for B.Tech degree with Honours in Electrical and Electronics Engineering:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>III B.Tech I-Sem</td>
<td>19BT50209</td>
<td>Power Semiconductor Devices and Modeling</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19BT50210</td>
<td>Dynamics of Electrical Machines</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19BT50211</td>
<td>Reactive Power Compensation and Management</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>III B.Tech II-Sem</td>
<td>19BT60211</td>
<td>Control Systems Design</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19BT60212</td>
<td>Static and Digital Protection of Power System</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19BT60213</td>
<td>Digital Control of Power Electronic and Drive Systems</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>IV B.Tech I-Sem</td>
<td>19BT70212</td>
<td>Power System Security and State Estimation</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19BT70213</td>
<td>Power System Stability and Control</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19BT70214</td>
<td>Modular Multilevel Converters</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>19BT70234</td>
<td>Mini Project</td>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>
I B. Tech. - I Semester
(19BT1BS01) DIFFERENTIAL EQUATIONS AND MULTIVARIABLE CALCULUS
(Common to EEE, ECE, EIE, CE, ME, CSE, CSSE & IT)

Int. Marks Ext. Marks Total Marks L T P C
40 60 100 3 1 - 4

PRE-REQUISITES: -

COURSE DESCRIPTION: Ordinary Differential Equations; Partial Differential Equations; Multivariable Calculus (Differentiation); Multivariable Calculus (Integration); Multivariable Calculus (Vector Calculus).

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1: Formulate and solve differential equations by applying knowledge of calculus for engineering problems.

CO2: Demonstrate knowledge in multivariable calculus for evaluating multiple integrals through techniques of integration.

CO3: Identify scalar and vector valued functions and evaluate vector integrals through knowledge of vector integral theorems and techniques.

DETAILED SYLLABUS:

Unit I: Ordinary Differential Equations (9 Periods)

Second and higher order linear differential equations with constant coefficients: Non-Homogeneous equations with R.H.S terms of the type e^{ax}, $\sin ax$, $\cos ax$, polynomials in x, $e^{ax}V(x)$ and $xV(x)$; method of variation of parameters; Equations reducible to linear differential equations with constant coefficients: Cauchy’s and Legendre’s linear equations; Applications to L-C-R Circuit problems.

Unit II: Partial Differential Equations (9 Periods)

Formation of PDE, solutions of first order linear and non-linear PDEs, Solution to homogenous and non-homogenous linear partial differential equations of second and higher order by complimentary function and particular integral method, method of separation of variables in Cartesian coordinates.
Unit III: Multivariable Calculus (Differentiation) (9 Periods)

Partial derivatives, Chain rule, Total derivative, Jacobian, Maxima and Minima of functions of two variables, Lagrange’s method of undetermined multipliers.

Unit IV: Multivariable Calculus (Integration) (9 Periods)

Evaluation of Double integrals (Cartesian and polar coordinates), Change of order of integration (Cartesian form only); Evaluation of Triple integrals; Change of variables: double integration from Cartesian to polar coordinates, Triple integration from Cartesian to spherical and cylindrical polar coordinates; Areas enclosed by plane curves.

Unit V: Multivariable Calculus (Vector Calculus) (9 Periods)

Total Periods: 45

TEXT BOOKS:

REFERENCE BOOKS:

I- B. Tech - I Semester
(19BT1BS02) BIOLOGY FOR ENGINEERS
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

PRE-REQUISITES: --

COURSE DESCRIPTION: Living Organisms; Proteins, Nucleic acids and Enzymes; Genetics and Molecular Biology; Recombinant DNA technology; Human Physiology and Applied Biology.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Apply the basic knowledge of biology to understand the significance of various biological techniques.

CO2. Identify the role of DNA in the molecular basis of information transfer and understand single gene disorders related to the health perspective.

CO3. Apply the basic knowledge of bio-analytical devices and methods to assess health issues.

DETAILED SYLLABUS:

UNIT I – Living Organisms (6 Periods)
Comparison of biological organisms with man-made systems, Classification of living organisms, Cellular basis of life, differences between prokaryotes and eukaryotes, classification on the basis of carbon and energy sources, molecular taxonomy

UNIT II – Proteins, Nucleic acids and Enzymes (6 Periods)
Biomolecules, structure and functions of proteins and nucleic acids, Industrial applications of enzymes, Fermentation and its industrial applications

UNIT III – Genetics and Molecular Biology (6 Periods)
Mendel’s laws, single gene disorders in humans, Genetic code, DNA replication, Transcription, Translation.

UNIT IV – Recombinant DNA technology (6 Periods)
Recombinant DNA Technology: recombinant vaccines, transgenic microbes, plants and animals, animal cloning, biosensors, biochips.
UNIT V – Human Physiology and Applied Biology (6 Periods)

Fundamentals of Human physiology, neurons, synaptic and neuromuscular junctions, Introduction to EEG, DNA fingerprinting, DNA Micro array and Genomics.

Total Periods: 30

TEXT BOOKS:

REFERENCE BOOKS:

ADDITIONAL LEARNING RESOURCES:

1. Structure and function of Proteins: https://nptel.ac.in/courses/104102016/16

2. Enzyme catalysis: https://nptel.ac.in/courses/103103026/module3/lec35/4.html

3. Biochips: https://nptel.ac.in/courses/112104029/3
I B. Tech. - I Semester
(19BT1BS03) ENGINEERING PHYSICS
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE-REQUISITES: -

COURSE DESCRIPTION: Wave Optics; Electromagnetic Waves; Fiber Optics; Semiconductors; Dielectrics; Magnetism; Superconductors and Nanomaterials

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Apply the knowledge of light waves to interpret the concepts of Interference, Diffraction and Polarization

CO2. Demonstrate the concepts of electromagnetic wave propagation in an Optical fibers.

CO3. Apply the basic knowledge of semiconductors to understand the functioning of various optoelectronic devices.

CO4. Demonstrate the basic knowledge of dielectric and magnetic properties to understand the various dielectric polarizations and magnetic materials.

CO5. Understand the concepts of superconductors and nanomaterials to familiarize their applications in relevant fields.

DETAILED SYLLABUS:

UNIT-I: WAVE OPTICS (9 periods)

Polarization: Polarization by reflection, refraction and double refraction - Nicol’s prism - Half wave and Quarter wave plate - Engineering applications of interference, diffraction and polarization.
UNIT-II: ELECTROMAGNETIC WAVES AND FIBER OPTICS (10 periods)
Divergence, Curl of Electric and Magnetic Fields - Maxwell’s Equations (qualitative)-
Electromagnetic wave propagation (conducting and non conducting media).

Introduction to fiber optics - Total Internal Reflection - Critical angle of propagation -
Acceptance angle, Acceptance cone - Numerical Aperture - Classification of fibers based on
Refractive index profile, modes - Attenuation losses - Dispersion - Propagation of
electromagnetic wave through optical fiber - Block diagram of fiber optic communication
- Applications of an optical fiber - Fiber optic Sensors (temperature, displacement).

UNIT-III: SEMICONDUCTORS (10 periods)
Origin of energy bands - Classification of solids based on energy bands - Intrinsic
semiconductors - Density of electrons in intrinsic semiconductor - Density of holes in
intrinsic semiconductor (qualitative) - Intrinsic carrier concentration - Fermi energy -
Electrical conductivity of intrinsic semiconductors - Extrinsic semiconductors - Density of
charge carriers in n-type - Density of charge carriers in p-type (qualitative) - Direct and
Indirect band gap semiconductors - Hall effect, Hall coefficient - Applications of Hall
effect - Drift and Diffusion currents - pn junction - Semiconducting materials for
optoelectronic devices : Photodiode and Semiconductor diode laser.

UNIT-IV: DIELECTRICS AND MAGNETISM (9 periods)
Introduction to dielectrics - Electric polarization - Dielectric polarizability, susceptibility
and dielectric constant - Types of polarizations (qualitative) - Frequency dependence of
polarization - Lorentz (internal) field - Dielectric break down - Piezoelectricity -
Applications of dielectrics.

Introduction to magnetics - Magnetic dipole moment, magnetization, magnetic
susceptibility and permeability - Origin of magnetic moment - Classification of magnetic
materials - Hysteresis loop - Soft and hard magnetic materials.

UNIT-V: SUPERCONDUCTORS AND NANOMATERIALS (7 periods)
Introduction to Superconductors, Properties - Critical parameters of Superconductors -
Meissner effect - Penetration depth - Types of Superconductors - BCS Theory -
Josephson effect (AC & DC) - High T_C Superconductors - Applications.

Basic principles of nanomaterials - Synthesis of nanomaterials by PLD method -
Properties of nanomaterials (Electrical, Magnetic, Optical and Mechanical) - Applications
of nanomaterials.

Total Periods: 45
TEXT BOOKS:

REFERENCE BOOKS:

I B.Tech – I Semester
(19BT10341) BASIC CIVIL AND MECHANICAL ENGINEERING
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

PRE-REQUISITES: --

COURSE DESCRIPTION: Overview of Civil Engineering; Surveying, Civil Engineering Materials, Mechanics of Materials, Building Components, Civil Engineering Infrastructure; Overview of Basic Mechanical Engineering; Internal Combustion Engines and Turbines, Mechanical Power Transmission Systems, Manufacturing Processes, Machining Processes, Non-Conventional Machining.

COURSE OUTCOMES: After successful completion of the course, students will be able to;

CO1: Apply the basic principles of civil engineering, Techniques and tools for analyzing civil structures and solve related problems.

CO2: Describe the working of principles of basic mechanical engineering and solve problems related to it

DETAILED SYLLABUS:

Part – A: CIVIL ENGINEERING

UNIT – I: SURVEYING AND CIVIL ENGINEERING MATERIALS (10 Periods)

Overview of Civil Engineering: Civil Engineering contributions to the welfare of society, specialized sub disciplines in Civil Engineering.

Surveying: Objectives, classification and principles; Measurements – distances, angles, levels, areas and volumes; contouring; Illustrative examples.

Civil Engineering Materials: Bricks, stones, concrete, steel, glass, timber, composite materials.

Mechanics of Materials: Forces, system of forces, laws of mechanics ,moment of a force, equilibrium, resultant, Internal and External forces, Stress, Strain, Hooke's law and Elasticity.
UNIT–II: BUILDING COMPONENTS AND CIVIL ENGINEERING INFRASTRUCTURE

(8 Periods)

BUILDING COMPONENTS:

Sub structure - Types of foundations, Bearing capacity and settlement, Requirement of good foundations.

Superstructure - Civil engineering construction - Brick masonry, Stone masonry, Beams, Columns, Lintels, Roofs, Floors, Stairs, Building bye-laws - bye-laws floor area, carpet area and floor space index, basics of interior design and landscaping.

Civil Engineering Infrastructure - Types of Bridges and Dams, Water supply and Sanitary systems, Rainwater harvesting, Types of Highways and Railways, Ports and Harbours.

Part – B: MECHANICAL ENGINEERING

UNIT –III: INTERNAL COMBUSTION ENGINES, TURBINES AND PUMPS

(9 Periods)

Overview of Mechanical Engineering: Introduction to Mechanical Engineering, specialized sub disciplines in Mechanical Engineering.

Internal Combustion Engines - Classification – Working principle of Petrol and Diesel Engines – Four stroke and two stroke engines – Comparison of four stroke and two stroke engines.

Turbines and Pumps – Classifications of Steam turbines - Impulse turbine, Reaction turbines; Working principle of Reciprocating Pumps (single acting and double acting) and Centrifugal Pumps.

UNIT –IV: MECHANICAL POWER TRANSMISSION SYSTEMS

(9 Periods)

Power Transmission Systems: Belt, rope and chain drives, Gears and Transmission screw

Power transmission by belts: Classification of belts, Length of the Belt (Open and Crossed-Belt Drives), Power Transmitted by Belt Drive, Tension due to Centrifugal Forces, Initial Tension, Maximum Power Transmitted.
Power transmission by Gear train: Gear terminology, Classification of gears, Gear train- Simple Gear Train and Compound Gear Train, Power Transmitted by Simple Gear Train.

UNIT –V: MANUFACTURING PROCESSES

(9 Periods)

Manufacturing processes: Elementary ideas of Casting, Forging, Rolling, Welding, Soldering and Brazing.

Machining processes- Lathe-Turning, Taper turning, Thread cutting, Shaping, Drilling, Grinding, Milling (simple sketches and short notes).

Total Periods: 45

TEXTBOOKS:

REFERENCES:

I B. Tech. – I Semester
(19BT10201) BASIC ELECTRICAL AND ELECTRONICS ENGINEERING
(Common to EEE, ECE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

PRE-REQUISITES: --

COURSE DESCRIPTION: Principles of Electrical Systems; AC Machines; Semiconductor Devices and Op-Amps.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Analyze electrical circuits by applying the conceptual knowledge of circuit elements.

CO2. Demonstrate knowledge on various generation technologies, protection devices, safety procedures and BEE standards.

CO3. Demonstrate knowledge on characteristics and applications of transformers and AC machines.

CO4. Demonstrate knowledge on characteristics and applications of diode, BJT and Op-amps.

DETAILED SYLLABUS:

Unit-I: Principles of Electrical Systems-I (9 Periods)

Basic electrical sources: DC-Battery, AC sources–Single loop generator; Single phase and three phase supply; Electrical circuit elements (R, L and C), Ohm’s law, Kirchhoff’s laws, Representation of sinusoidal waveforms, peak and RMS values, phasor representation, reactive power, apparent power, real power, energy and power factor.

Unit-II: Principles of Electrical Systems-II (9 Periods)

Significance of Power factor and power factor correction, most economical power factor. Typical layout of electrical grid; Typical layout and operation of Hydro, Thermal and Solar Power Plants; Fuse, circuit breaker (MCB, MCCB, RCCB, ELCB), relay (elementary treatment); Inverter and UPS (block diagram approach only). Earthing – importance of earthing, pipe earthing and plate earthing; Safety measures. Energy Efficiency (Star rating) standards by BEE.
Unit-III: Transformers and AC Machines (9 Periods)

Construction and working of a single phase transformer, EMF Equation; Construction and working of three phase induction motor, torque equation, torque-slip characteristics, applications; construction and working of a resistor start & capacitor start and run single phase induction motor, applications; Construction and working of synchronous machine, applications.

UNIT-IV: Semiconductor Devices (10 Periods)

PN Junction diode, Characteristics, applications - half wave and full wave rectifier. Zener diode, characteristics, application—Regulator. BJT—operation, configurations, characteristics, applications - switch and amplifier.

UNIT-V: Op-Amps (8 Periods)

Total Periods: 45

TEXT BOOKS:

REFERENCE BOOKS:

I B. Tech. - I Semester
(19BT1BS31) ENGINEERING PHYSICS LAB
/Common to ECE, EEE & EIE/

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

PRE - REQUISITES: --

COURSE DESCRIPTION: Determination of wavelength of light and thickness of a thin film; numerical aperture and acceptance angle of optical fiber; Characteristics of various semiconductor diodes; Resistivity of semiconductor; magnetic field along axial line of a current carrying coil

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Apply the basic knowledge of light waves and semiconductors to demonstrate the functioning of optoelectronic devices.

CO2. Understand the experimental procedures to calculate the thickness of a thin film, Hall coefficient, Hysteresis losses, and acceptance angle of an optical fiber.

CO3. Determine the experimental values of magnetic field induction, wave length of a light source, energy gap of a semiconductor.

CO4: Apply skills to plot characteristic curves to determine the various parameters of semiconductor diodes.

CO5. Work independently and in teams to solve problems with effective communication.

A minimum of any Ten experiments are to be conducted among the following:

List of Engineering Physics Experiments:

1. Determine the thickness of the wire using wedge shape method.
3. Determination of wavelength by plane diffraction grating method.
4. Estimation of magnetic field along the axis of a circular coil carrying current.
5. Study the variation of Magnetic field induction (B) vs Magnetic field strength (H) by magnetizing the magnetic material (B-H Curve).
6. Determination the numerical aperture of a given optical fiber and hence to estimate its acceptance angle.

7. Determination of number of charge carriers and Hall coefficients of a given semiconductor using Hall Effect.

8. Determine the resistivity of semiconductor by Four probe method.

9. Determine the energy gap of a semiconductor.

10. Study the I-V characteristics of pn junction diode.

11. Estimation of threshold voltages of different LED's.

12. Study the characteristics of Photodiode.

REFERENCES:

I B. Tech. – I Semester
(19BT10231) BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB
(Common to ECE, EEE & EIE)

Int. Marks Ext. Marks Total Marks L T P C
50 50 100 - - 2 1

PRE-REQUISITES: Physics at intermediate level.

COURSE DESCRIPTION: Practical investigations on Electrical circuits, AC Machines, Semiconductor Devices and Op-Amps.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Analyze, measure, interpret and validate the practical observations by applying the fundamental knowledge of electrical circuits, machines and electronic devices.

CO2. Design Op-amp based amplifier, voltage summer and integrator circuits for desired specifications.

CO3. Work independently and in teams to solve problems with effective communication.

List of Experiments:

Minimum Ten experiments are to be conducted.

2. Verification of Ohm’s law and Kirchhoff’s laws.

3. Circuit
 (a) With one lamp controlled by one switch and provision of 2-pin or 3-pin socket PVC surface conduit system.
 (b) With two lamps controlled by two switches with PVC surface conduit system.
 (c) For Stair case wiring and Godown wiring.

4. Measurement of Power factor and it’s improvement.

5. Load test on 1-Phase Transformer.

7. Brake test on 1-phase induction motor.

8. VI Characteristics of PN and Zener Diodes.

9. Ripple factor and load regulations of rectifier with and without filters.

10. Input and output characteristics of CE configuration.

12. Design of voltage summer and integrator using op-amp.

REFERENCES BOOKS/ LAB MANUALS:

ADDITIONAL LEARNING RESOURCES:

1. www.vlab.co.in, Virtual Electric Circuits Lab, A initiative of MHRD under NMEICT.

2. www.vlab.co.in, Basic Electronics Lab, A initiative of MHRD under NMEICT.

3. https://nptel.ac.in/courses/117106108/

5. https://nptel.ac.in/courses/108105017/

6. https://nptel.ac.in/courses/108108112/

7. https://nptel.ac.in/courses/117107094/
I B. Tech. – I Semester
(19BT20331) ENGINEERING WORKSHOP
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

PRE-REQUISITES: --

COURSE DESCRIPTION: Knowledge on various workshop hand and power tools; hands on experience in different manufacturing trades such as fitting, carpentry, sheet metal forming and foundry; Demonstration on dismantling and assembling of various two wheeler parts, power tools in machining and metal joining, basics of plumbing and working of 3D printer.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Demonstrate knowledge on various materials, manufacturing process, hand and power tools involved in different engineering applications.

CO2. Identify and analyse the functions of different automobile parts.

CO3. Design and model different prototypes in the carpentry, fitting and sheet metal operations and interpret the information of the components through drawings.

CO4. Apply the basic Engineering knowledge to design, analyse and manufacture prototypes using 3D printing technology

CO5. Work independently or as a team to solve a problem with effective communication.

DETAILED SYLLABUS:

FITTING: Conduct a detailed study on various aspects in fitting trade which includes the details of fitting operations, safety precautions, types of tools, tool holders, miscellaneous tools, care and maintenance of hand tools, marking and measurement tool, and finishing tool.

List of Exercises:
1. Make a square/half round mating from the given MS work pieces
2. Make a V-mating from the given MS work pieces
3. Make a dovetail mating from the given MS work pieces
CARPENTRY: Conduct a detailed study on various aspects in carpentry trade which includes the details of types of wood, carpentry tools, wood working techniques, types of joints, safety precautions, and care and maintenance of tools.

List of Exercises:

4. Prepare a cross lap joint
5. Prepare dovetail / bridle joints
6. Prepare a Mortise and Tenon joint.

SHEET METAL FORMING: Conduct a detailed study on various aspects in sheet metal forming which includes the details of sheet materials, hand tools, sheet metal fabrication, and safety and precautions

List of Exercises:

7. Fabricate a rectangular tray as per the dimensions
8. Fabricate square vessel/cylinder as per the dimensions
9. Fabricate a Funnel as per the dimensions

FOUNDRY: Conduct a detailed study on various aspects in foundry which includes the details of moulding sand, properties of moulding sand, types of patterns and pattern, materials, foundry tools, and safety and precautions

List of Exercises:

10. Prepare a sand mold, using the given single piece pattern (stepped pulley/cube)
11. Prepare a sand mold, using the given split piece pattern (pipe bent/dumbbell)

DEMONSTRATION:

12. Demonstrate the dismantling and assembling of various two wheeler parts
13. Demonstrate the usage of power tools.
14. Demonstrate the plumbing operation and identify the essential tool and materials required for plumbing.
15. Demonstrate the working of 3D printer

Note: Student shall perform any Twelve Exercises
REFERENCE BOOKS/LABORATORY MANUALS:

ADDITIONAL LEARNING RESOURCES:

I B. Tech. – I Semester
(19BT1AC01) SPOKEN ENGLISH
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE-REQUISITES: -

COURSE DESCRIPTION: Functional English; Vocabulary Building; Functional Grammar-I; Functional Grammar – II; Communication Skills.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. CO1. Analyze the techniques of listening, speaking, reading, writing and apply through functional English to communicate effectively with the engineering community and society.

DETAILED SYLLABUS:

UNIT I - FUNCTIONAL ENGLISH: (6 Periods)

Introduction - Functional Spoken English; Self Introduction; Listening – Speaking: Do’s and Don’ts; Expressing: Ability / Admiration / Agreement / Annoyance / Appreciation / Pleasure / Sarcasm / Satisfaction / Surprise / Approval / Certainty/ Doubt / Gratitude / Possibility / Fear / Worry / Condolences; Asking for: Advice / Clarification / Direction / Information / Permission; Making: Predictions / recommendations.

UNIT II - VOCABULARY BUILDING: (6 Periods)

Introduction: Vocabulary for day-to-day conversations; Vegetables / Groceries / Fruits / Weather; Parts of a Human body / Dresses / Furniture / Relations; Birds / Cries of Animals; Food / Hospitality / Houses / Rooms / Tools; Airport / News Paper / Books / Gems; Corporate Vocabulary / Jobs / Occupations / Diseases; British / American spelling; Slang Words and Technical Jargon.

UNIT III - FUNCTIONAL GRAMMAR - I: (6 Periods)

Parts of Speech, Verb forms; Tenses; Voice; Speech.

UNIT IV - FUNCTIONAL GRAMMAR - II: (6 Periods)

Universal Auxiliaries; Sentence Structure - WH - Questions - How to frame Questions and give answers; Question Tags; Subject and verb agreement; Spotting Errors.
UNIT V – COMMUNICATION SKILLS: (6 Periods)

Polite, Courteous and Diplomatic expressions; Good Manners and Etiquette; Conversation Techniques; Narrating Stories.

Total Periods: 30

TEXT BOOKS:

REFERENCE BOOKS:

ADDITIONAL LEARNING RESOURCES

I B. Tech. - II semester
(19BT2BS01) TRANSFORMATION TECHNIQUES AND LINEAR ALGEBRA
(Common to EEE, ECE, EIE, CE, ME, CSE, CSSE & IT)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

PRE-REQUISITES:

COURSE DESCRIPTION: Fourier Series and Fourier Transforms; Laplace Transforms; Inverse Laplace Transforms; Linear Algebra-I (Matrices); Linear Algebra-II (Vector Spaces).

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1: Apply the knowledge of Fourier and Laplace transform techniques to solve differential equations.

CO2: Analyze linear transformations and associated matrices to solve engineering problems by applying the knowledge of linear algebra.

DETAILED SYLLABUS:

UNIT- I: Fourier Series and Fourier Transforms (9 Periods)

Fourier series: Determination of Fourier coefficients, Euler’s formulae, convergence of Fourier series (Dirichlet’s conditions), Fourier series in \((0, 2l),\ (l, l)\); Fourier series of even and odd functions; Half-range Fourier sine and cosine expansions in \((0, l)\); Fourier integral theorem (statement only), Fourier sine and cosine integrals; Fourier transforms, Fourier sine and cosine transforms, Inverse Fourier transforms.

UNIT- II: Laplace Transforms (9 Periods)

Definition of Laplace transform, existence conditions, Laplace transform of standard functions, Properties of Laplace transforms, Laplace transforms of derivatives, Laplace transforms of integrals, multiplication by \(t^n\), division by \(t\), Laplace transform of periodic functions, Laplace transforms of unit step function and unit impulse function.

UNIT- III: Inverse Laplace Transforms (9 Periods)

Inverse Laplace transform by different methods; Convolution theorem (without proof), inverse Laplace transforms by convolution theorem; Applications of Laplace transforms to ordinary differential equations of first and second order with constant coefficients.
UNIT- IV: Linear Algebra-I (Matrices)
(9 Periods)

Rank of a matrix: echelon form; Linear systems of equations: solving system of Homogeneous and Non-Homogeneous equations; Eigen values and Eigen vectors of a matrix and properties (without proofs), Diagonalization of a matrix by orthogonal transformation; Quadratic forms and nature of the quadratic forms, reduction of quadratic form to canonical form by orthogonal transformation.

UNIT- V: Linear Algebra-II (Vector Spaces)
(9 Periods)

Vector spaces, Linear dependence and independence of vectors, basis, dimension, Linear transformations (maps), range and kernel of a linear map, rank and nullity, inverse of a linear transformation, rank-nullity theorem (without proof), matrix associated with a linear map.

Total Periods: 45

TEXT BOOKS:

REFERENCE BOOKS:

I B. Tech. - II Semester
(19BT1BS04) ENGINEERING CHEMISTRY
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>100</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

PRE-REQUISITES: -

COURSE DESCRIPTION: Atomic Structure and Bonding Theories; Water Treatment; Electrochemistry and Applications; Corrosion; Instrumental Methods and Applications; Fuel chemistry and Lubricants.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Apply the basic knowledge of quantum mechanical approach to atomic structure and bonding theories to identify shapes of different orbitals and molecules.

CO2. Analyze and solve problems associated with hardness of water, boiler troubles and address the societal, health and safety issues related to quality of water.

CO3. Apply the basic knowledge of corrosion phenomenon to identify solutions for control of corrosion and demonstrate competency in the basic concepts of electrochemical cells.

CO4. Demonstrate the basic knowledge of instrumental methods and their applications in the structural analysis of materials.

CO5. Apply the basic knowledge of fuel chemistry and lubricants to identify the quality of fuels and lubricants.

DETAILED SYLLABUS:

Unit I: Atomic Structure and Bonding Theories (9 Periods)

Quantum-mechanical model of atom, Schrodinger wave equation, significance of \(\Psi \) and \(\Psi^2 \), applications to particle in a box and hydrogen atom; Molecular orbital theory – bonding in homo and hetero nuclear diatomic molecules – energy level diagrams of \(\text{N}_2 \), \(\text{O}_2 \), NO and CO; \(\Pi \)-molecular orbitals of butadiene and benzene; VSEPR theory and molecular shapes.
Unit II: Water Treatment (9 Periods)

Unit III: Electrochemistry and Applications (10 Periods)

Electrode potential, Nernst equation, reference electrodes (Calomel electrode and glass electrode), electrochemical cell, cell potential calculations. Primary cells – dry cell, alkali metal sulphide batteries, Secondary cells – lead acid, lithium ion batteries, Fuel cells - Hydrogen-oxygen fuel cell, Methanol-oxygen fuel cell, Solid-oxide fuel cell.

Corrosion: Introduction, Definition, types of corrosion- wet (galvanic corrosion, concentration cell corrosion) and dry corrosion, Factors influencing corrosion, control of corrosion- sacrificial anodic protection, Impressed current cathodic protection, electroplating method (Nickel).

Unit IV: Instrumental Methods and Applications (9 Periods)

Introduction to spectroscopy–types of energy present in molecules, types of spectra, UV-Vis spectroscopy – principle, types of electronic transitions, chromophore, auxochrome, Bathochromic shift, Hypsochromic shift, Instrumentation of UV-Vis spectrophotometer, applications; Infrared spectroscopy – principle, types of vibrational modes, group frequencies, Instrumentation of IR spectrophotometer, applications. principle and applications of physicochemical methods (SEM, TEM, X-ray diffraction).

Unit V: Fuel chemistry and Lubricants (8 Periods)

Fuel chemistry: Types of fuels, calorific value, numerical problems based on calorific value; Liquid fuels, cracking of oils (Thermal and Fixed-bed catalytic cracking), knocking and anti-knock agents, Octane and Cetane values, Synthetic petrol: Fischer-Tropsch method and Bergius process.
Lubricants: Definition, functions of lubricants, mechanism of lubrication, classification of lubricants, properties of lubricants – viscosity and viscosity index, flash and fire points, cloud and pour points, Aniline points, neutralization number and mechanical strength.

Total Periods: 45

TEXT BOOKS:

REFERENCE BOOKS:

I B. Tech. – II Semester
(19BT1HS01) COMMUNICATIVE ENGLISH
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE-REQUISITES: -

COURSE DESCRIPTION: Introduction to communication; Active listening; Effective speaking; Reading; Technical writing.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Analyze the modes and techniques of listening, speaking, reading, writing and apply appropriately to communicate effectively with the engineering community and society.

DETAILED SYLLABUS:

UNIT I - INTRODUCTION TO COMMUNICATION (9 Periods)

Introduction – Language as a Tool of Communication – Communicative Skills (Listening, Speaking, Reading and Writing) – Effective Communication – Modes of Communication – Barriers to Communication (classification) - Case study

UNIT II - ACTIVE LISTENING (9 Periods)

Introduction – Traits of a Good Listener – Listening Modes – Types of Listening – Barriers to Effective Listening – Listening for General Content and Specific Information - Case study

UNIT III - EFFECTIVE SPEAKING (9 Periods)

Introduction – Achieving Confidence, Clarity and Fluency – Paralinguistic Features – Barriers to Speaking – Types of Speaking – Conferences; significance, planning and preparation and procedure – Symposia and Seminars - Persuasive Speaking - Case study

UNIT IV - READING (9 Periods)

Introduction – Reading and Interpretation – Intensive and Extensive Reading – Critical Reading – Techniques for Good Comprehension- SQ3R Reading Technique –Study Skills - Case study
UNIT V – TECHNICAL WRITING (9 Periods)

Total Periods: 45

TEXT BOOKS:

REFERENCE BOOKS:

ADDITIONAL LEARNING RESOURCES

5. https://goo.gl/kPMr9u: 10 important issues for speakers at a conference.

PROGRAMMING FOR PROBLEM SOLVING
(Common to ECE, EEE & EIE)

PRE-REQUISITES: A course on Basic Mathematics

COURSE DESCRIPTION: Introduction to problem solving approach, Introduction to Python programming, control structures, sequences, sets, Dictionaries, Implementation of Data structures using Python, Modular programming, file handling, Data representation and Visualization.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Demonstrate knowledge on Python constructs to solve basic problems.

CO2. Develop and use Python modules to provide solutions to problems.

DETAILED SYLLABUS:

UNIT-I: INTRODUCTION TO PROBLEM SOLVING AND PYTHON PROGRAMMING
(10 Periods)

Problem Solving Aspect: top-down design, implementation of algorithms, building blocks of flow charts, program verification and efficiency of algorithms.

Python Programming: tokens, literals, identifiers, keywords, special symbols and operators; fundamental data types, expressions, type conversions, handling Input and output in Python.

UNIT-II: CONTROL STRUCTURES
(8 Periods)

Selection Statements: if statement, if-else statement, if-elif-else statement, nested-if statement.

Iterative Statements: while loop, for loop, break statement, continue statement, pass and else statements used with loops.
UNIT-III: SEQUENCES, SETS, DICTIONARIES AND DATA STRUCTURES

(9 Periods)

Sequences: Lists and operations - creating, inserting elements, updating elements, deleting elements, searching and sorting, list comprehensions, nested lists; tuples - creating, searching and sorting, nested tuples; strings - Initializing a string and string operations, string handling methods, string formatting; sets - set creation and operations; dictionaries - operations on dictionaries, dictionary methods, sorting elements using lambdas.

Data structures: Stacks - push, pop, peek and display operations on stack, applications of stack; Queues - enqueue, dequeue and display operations on queue, applications of queues.

UNIT-IV: MODULAR PROGRAMMING AND FILE HANDLING

(10 Periods)

Modular Programming: need for functions, function definition, function call, variable scope and lifetime, return statement, positional arguments, keyword arguments, default arguments and variable-length arguments, recursive functions; Modules - math, NumPy, date and time.

File Handling: types of files, opening and closing files, reading and writing data.

UNIT-V: DATA REPRESENTATION AND VISUALIZATION

(8 Periods)

Pandas: creating data frame, reading data from CSV files, indexing and selecting data, dealing with rows and columns; Visualization - bar plots, histogram, Scatter Plot.

Total Periods: 45

TEXT BOOKS:

REFERENCE BOOKS:

I B. Tech. – II Semester
(19BT20201) ELECTRIC CIRCUITS

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>60</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE-REQUISITES: Physics at Intermediate Level.

COURSE DESCRIPTION: Circuit reduction and analyzing techniques; Analysis of single and poly phase circuits; Circuit theorems; Magnetically coupled circuits and Two-Port networks.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Analyze and solve various DC, single phase, poly phase and coupled circuits by applying the conceptual knowledge of network reduction, analyzing techniques and theorems.

CO2. Design the components for resonant circuits and passive filters to meet the specified needs.

DETAILED SYLLABUS:

UNIT-I: FUNDAMENTALS OF ELECTRIC CIRCUITS

(9 Periods)

Basic definitions of network, circuit, node, branch and loop; network reduction techniques-series, parallel, series-parallel circuits, current division and voltage division rules; source transformation, wye-to-delta and delta-to-wye transformations; nodal analysis and super node concept, mesh analysis and super mesh concept – numerical problems with dependent and independent AC & DC sources.

UNIT-II: ANALYSIS OF SINGLE PHASE AND THREE PHASE AC CIRCUITS

(12 Periods)

Peak factor and form factor for different wave forms; Analysis of single phase AC circuits: impedance and admittance, impedance triangle; Power triangle; Sinusoidal response of R, L and C elements with different combinations; Resonance, bandwidth and quality factor for series and parallel networks.
Analysis of three phase balanced and unbalanced systems; Measurement of active and reactive power in balanced and unbalanced systems-single wattmeter and two wattmeter methods.

UNIT-III: CIRCUIT THEOREMS (10 Periods)

Superposition, Thevenin’s, Norton’s, Maximum power transfer, Millmann’s, Telligen’s, Compensation and Reciprocity theorems for DC & AC Excitations (without proof); Concept of dual and duality – Numerical problems.

UNIT-IV: MAGNETICALLY COUPLED CIRCUITS (6 Periods)

Coupled circuits-self and mutual inductance, coefficient of coupling, DOT convention; series and parallel connection of coupled coils, equivalent circuits of coupled coils; energy in coupled circuit; analogy between electrical and magnetic circuits.

UNIT-V: PASSIVE FILTERS (8 Periods)

Total Periods: 45

TEXT BOOKS:

REFERENCE BOOKS:

I B. Tech. - II Semester
(19BT1BS32) ENGINEERING CHEMISTRY LAB
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE-REQUISITES:

COURSE DESCRIPTION: Estimation of hardness, alkalinity, dissolved oxygen of water samples, Iron, Strength of an acid in Pb-acid battery and residual chlorine in drinking water by volumetric methods; Measurement of viscosity of lubricants; Instrumental methods like conductivity meter, potentiometer, pH meter and colorimeter; Characterization of simple organic compounds by UV-Vis and IR spectroscopy.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Apply analytical skills for the quantitative estimation of materials through volumetric methods of analysis and address the societal, health issues related to quality of water.

CO2. Develop analytical skills for the quantitative estimation of materials through instrumental methods of analysis.

CO3. Work independently and in teams to solve problems with effective communication.

A minimum of any Ten experiments are to be conducted among the following:

List of Experiments

1. Estimation of Hardness of water by EDTA method
2. Determination of alkalinity of Water sample
4. Estimation Fe (II) by Dichrometry
5. Conductometric titration of strong acid Vs strong base
6. Estimation of Ferrous ion by Potentiometry
7. Determination of strength of acid by pH metric method
8. Determination of Strength of an acid in Pb-Acid battery
9. Determination of Viscosity by Ostwald’s viscometer

10. Determination of percentage of Iron in Cement sample by colorimetry

11. Estimation of residual chlorine in drinking water.

12. Identification of simple organic compounds by UV-Vis and IR spectroscopy

TEXT BOOKS:

I. B. Tech. - II Semester
(19BT1HS31) COMMUNICATIVE ENGLISH LAB
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

PRE-REQUISITES: -

COURSE DESCRIPTION: Phonetics; Vocabulary Building; Grammar; Just a Minute; Elocution/Impromptu; Giving Directions; Role Plays; Public Speaking; Describing Objects; Reading Comprehension; Listening Comprehension; Information Transfer; Letter Writing

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Function effectively as an individual and as a member in diverse teams analyzing the situations and applying appropriate listening, speaking, reading, writing skills to communicate effectively with the engineering community and society.

*First Ten exercises are mandatory among the following:

List of Exercises:

1. Just a Minute, Elocution/Impromptu

 Steps to be followed – Useful tips – Dos & Don’ts – Preparation – Examples

2. Phonetics

3. Vocabulary Building

 Prefixes & Suffixes – Synonyms & Antonyms – Phrasal verbs – Idioms – One word substitutes – Words often confused

4. Grammar

 Tenses – Nouns – Word order and error correction

5. Giving Directions

 Useful phrases – Sample conversations – Exercises
6. Role Plays

Useful tips – Dos & Don’ts – Exercises – Role Plays for practice

7. Public Speaking

8. Letter Writing

Introduction – Objective – Formats – Types – Exercises

9. Describing Objects

Jargon – Useful Phrases – Do’s & Don’ts – Exercises

10. Listening Comprehension

Introduction – Types of listening – Practice – Benefits of listening – Exercises

11. Information Transfer

Tables – Pie Charts – Venn Diagrams – Graphs – Flow Charts – Steps to be followed – Exercises

12. Reading Comprehension

Introduction – Types of reading – Inferring – Critical analysis – Exercises

TEXT BOOK:

1. Communicative English Lab Manual (SVEC-19)

REFERENCE BOOKS:

SUGGESTED SOFTWARE:

1. SoftX

2. Speech Solutions

3. English Pronunciation Dictionary by Daniel Jones

8. Language in Use 1, 2 & 3

10. Centronix – Phonetics

11. Let’s Talk English, Regional Institute of English South India.

ADDITIONAL LEARNING RESOURCES

1. https://goo.gl/IjE45p: Amazon India site – with thousands of different product descriptions

2. https://goo.gl/3ozeO6: 15 ways to calm your nerves before giving a presentation.

I B. Tech. – II Semester
(19BT10331) COMPUTER AIDED ENGINEERING DRAWING
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

PRE-REQUISITES:--

COURSE DESCRIPTION: Engineering drawing conventions; Importance of engineering drawing; fundamental concepts of sketching; computer aided drafting and different types of projections of geometric entities (both 2D and 3D) through computer aided drafting packages.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1: Apply the principles of engineering drawing, Methods and CAD tools to draw the Geometries, Curves and Orthographic projections used to communicate in engineering field.

CO2: Develop lateral surfaces of solids and draw Isometric views of given objects for engineering communication using principles of engineering drawing and CAD tools.

DETAILED SYLLABUS:

Introduction to Engineering Graphics and Design:

Principles, significance - Conventions in drawing-lettering - BIS conventions-Dimensioning principles and conventional representations.

Exercises:

1. Practice exercise on Basic Lettering and Dimensioning
2. Practice exercise on Conventional representations

Introduction to AutoCAD: Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, polylines, trimming, extending, stretching, fillets, arrays, dimensions.
Exercises:

3. Practice exercise using basic drawing commands
4. Practice exercise using editing commands

CONICS, CURVES, PROJECTION OF POINTS, LINES AND PLANES

Conics & Special Curves: Conic sections including the rectangular hyperbola-eccentricity method only; Cycloid, Epicycloid and Hypocycloid, Involute.

Exercises:

5. Practice exercises on Ellipse, Parabola, Hyperbola and Rectangular Hyperbola
6. Practice exercises on Cycloid, Epicycloid, Hypocycloid and Involute

Projection of points, lines and planes: Projection of points in any quadrant, lines inclined to one or both planes, finding true lengths, angle made by line, Projections of regular plane surfaces.

Exercises:

7. Practice exercises on Projection of points
8. Practice exercises on projection of lines inclined to one plane
9. Practice exercises on projection of lines inclined to both planes
10. Practice exercises on Projections of regular plane surfaces

PROJECTION OF SOLIDS AND SECTION OF SOLIDS

Projection of solids: Projection of regular solids inclined to one plane.

Sections of solids: Section planes and sectional view of right regular solids-prism, cylinder, pyramid and cone, True shapes of the sections.

Exercises:

11. Practice exercises on Projections of regular solids
12. Practice exercises on Sections of solids

DEVELOPMENT OF SURFACES

Development of surfaces: Development of surfaces of right regular solids-prism, cylinder, pyramid, cone and their sectional parts.
Exercises:

13. Practice exercises on Development of surfaces of right regular solids

ORTHOGRAPHIC AND ISOMETRIC PROJECTIONS

Orthographic Projections: Systems of projections, conventions and application to orthographic projections.

Isometric Projections: Principles of isometric projection- Isometric scale; Isometric views: lines, planes, simple solids.

Exercises:

14. Practice exercises on Orthographic Projections

15. Practice exercises on Isometric Projections

TEXT BOOKS:

REFERENCE BOOKS/LABORATORY MANUALS:

I B. Tech. – II Semester
(19BT10531) PROGRAMMING FOR PROBLEM SOLVING LAB
(Common to ECE, EEE & EIE)

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

PRE-REQUISITES: A course on Basic Mathematics

COURSE DESCRIPTION: The course is designed to provide hands on practice on Scratch programming and python programming for problem solving.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Develop scripts using Scratch tool to simulate simple problems.

CO2. Apply Python Constructs and Modules to develop solutions for real-life problems.

CO3. Function effectively as an individual and in team to foster knowledge and creativity.

CO4. Write and present a substantial technical report/document effectively.

PRACTICAL EXERCISES:

1) a) Design a script in Scratch to simulate Airplane for take-off and land.
 b) Design a script in Scratch to make a sprite to ask the user to enter two different numbers and an arithmetic operator and then calculate and display the result.

2) a) Design a script in Scratch to calculate factorial of a given number.
 b) Design a script in Scratch to simulate Maze game. (Hint: To get Maze images refer http://inventwithScratch.com/downloads/)

3) a) Write a python script to read two integer numbers and perform arithmetic operations.
 b) Write a python script to evaluate following expressions by considering necessary inputs.
 i) $ax^2 + bx + c$
 ii) $ax^5 + bx^3 + c$
 iii) $(ax + b) / (ax - b)$
 iv) $x - a / b + c$

4) a) Write a python script to convert given decimal number into octal, hexa decimal and binary.
 b) Write a python script to read four integer values separated with commas and display the sum of those four numbers.
 c) Write a python script to print “SVEC” with prefix of ten spaces by using format().
5) a) Write a python script to calculate electricity bill based on following slab rates.

<table>
<thead>
<tr>
<th>Consumption units</th>
<th>Rate (in Rupees/Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>4</td>
</tr>
<tr>
<td>101-150</td>
<td>4.6</td>
</tr>
<tr>
<td>151-200</td>
<td>5.2</td>
</tr>
<tr>
<td>201-300</td>
<td>6.3</td>
</tr>
<tr>
<td>Above 300</td>
<td>8</td>
</tr>
</tbody>
</table>

(Hint: To get Consumption units take current Meter reading, old meter reading from the user as input)

b) Print the following pattern using python script.

```
   1
   1 2 1
   1 2 3 2 1
   1 2 3 4 3 2 1
   1 2 3 4 5 4 3 2 1
```

6) a) Write a python script to read \(N \) student details like name, roll number, branch and age. Sort the student details based on their names and display.

b) Write a python script to delete duplicate strings from a list of strings. (Insertion order should maintain after deleting duplicate string).

c) Write a python script to read \(N \) number of student details into nested list and convert that as a nested dictionary.

7) a) Design a function that can perform sum of two or three or four numbers.

b) Write a python script to implement towers of Hanoi problem.

c) Write a Python function prime square (l) that takes a nonempty list of integers and returns True if the elements of l alternate between perfect squares and prime numbers, and returns False otherwise. Note that the alternating sequence of squares and primes may begin with a square or with a prime. Here are some examples to show how your function should work.

```
>>> primesquare([4])
True
>>> primesquare([4,5,16,101,64])
True
>>> primesquare([5,16,101,36,27])
False
```

8) a) Write a python script to perform arithmetic operations on numpyarrays.
b) Write a python script to perform following matrix operations using numpy.
 i) Dot product ii) Matrix product iii) Determinant iv) Inverse

9) a) Write a python script to Create Pandas data frame using list of lists.
 b) Write a python script to load data from a CSV file into a Pandas Data Frame
 and perform basic operations on it.

10) a) Draw a Scatter Plot by considering an appropriate data set.
 b) Draw histograms by considering an appropriate data set.

11) **Mini Project-1**

12) **Mini Project-2**

TEXT BOOK:

I B. Tech. – II Semester
(19BT20231) ELECTRIC CIRCUITS LAB

<table>
<thead>
<tr>
<th>Int. Marks</th>
<th>Ext. Marks</th>
<th>Total Marks</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRE-REQUISITES: Physics at Intermediate Level.

COURSE DESCRIPTION: Practical investigations on DC, single and poly phase circuits, Circuit theorems, magnetically coupled circuits and Two-Port networks.

COURSE OUTCOMES: After successful completion of the course, students will be able to:

CO1. Analyze, measure, interpret and validate the practical observations by applying the conceptual knowledge of electrical circuits.

CO2. Design resonant and Two-port networks meeting the specified needs using electrical circuit concepts.

CO3. Work independently and in teams to solve problems with effective communication.

List of Experiments:

Minimum Ten experiments are to be conducted.

1. Analysis of Series and Parallel circuits.
2. Mesh and nodal analysis.
5. Analysis of Series and Parallel resonance.
6. Measurement of active and reactive power in three phase circuits.
7. Verification of Superposition and Reciprocity theorems.
8. Verification of Thevenin’s and Norton’s theorem.
9. Verification of Maximum Power transfer theorem for DC & AC excitations.
10. Determination of self and mutual inductance and coefficient of coupling.
11. Design and analysis of Low pass filter.

12. Design and analysis of High pass filter.

Reference Books/ Lab Manuals:

ADDITIONAL LEARNING RESOURCES:

1. www.vlab.co.in, *Virtual Electric Circuits Lab*, A initiative of MHRD under NMEICT.

2. https://nptel.ac.in/courses/117106108/